HEAL DSpace

Τεχνικές Επίλυσης Αντίστροφων Προβλημάτων Με Βάση Τις Συναρτήσεις Φραγμένης Κύμανσης

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Μαρκάκη, Βασιλική el
dc.contributor.author Markaki, Vasiliki en
dc.date.accessioned 2017-06-12T10:11:42Z
dc.date.issued 2017-06-12
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/45029
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.7181
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Εφαρμοσμένες Μαθηματικές Επιστήμες” el
dc.rights Default License
dc.subject Μερικές διαφορικές εξισώσεις el
dc.subject Μέτρο Radon el
dc.subject Φραγμένη κύμανση el
dc.subject Ελαστογραφία el
dc.subject Αγωγιμότητα el
dc.subject Αντίστροφο πρόβλημα el
dc.subject Partial differential equations en
dc.subject Radon measure en
dc.subject Bounded variation en
dc.subject Conductivity en
dc.subject Elastography en
dc.subject Inverse problem en
dc.title Τεχνικές Επίλυσης Αντίστροφων Προβλημάτων Με Βάση Τις Συναρτήσεις Φραγμένης Κύμανσης el
dc.title Investigation Of Inverse Problems On The Basis Of Bounded Variation Functions en
heal.type masterThesis
heal.classification Applied mathematics en
heal.classificationURI http://id.loc.gov/authorities/subjects/sh93002523
heal.dateAvailable 2018-06-11T21:00:00Z
heal.language el
heal.access embargo
heal.recordProvider ntua el
heal.publicationDate 2017-02-21
heal.abstract The present work has a first part pertaining to the presentation of the fundamental and cornerstone aspects of the inverse conductivity problem: the existence, uniqueness and stability of the solution of this problem. In the sequel, the master thesis involves the development of inversion techniques concerning the solvability of typical inverse dynamic problems in Elastography. The novel concept consists in exploiting and developing analysis from the framework of bounded variation fun\-ctions ($BV$ functions), which represent accurately the discontinuous nature of the inhomogeneities under reconstruction.\ In Chapter $\S2$ \textit{Calderón's Inverse Problem} is presented. The conductivity equation $\nabla \cdot σ\nabla u=0$ is studied for a bounded, two-dimensional domain $Ω$ and an anisotropic $L^{\infty}-$ smooth conductivity $σ.$ The work of \cite{Astala2005a,Astala2006a} is followed, ac\-cor\-ding to which the \textit{Dirichlet-to-Neumann} operator determines uniquely the bounded measurable condu\-cti\-vity $σ$ in a \footnotemark{constructive} manner. This gives a positive answer to a question of \textit{A.P.Calderón} from 1980. In higher dimensions the problem remains open.\ \footnotetext{ through the construction of \textit{complex geometric optics solutions, CGO}} Chapter $\S3$ is devoted to the study of the hyperbolic conductivity equation, as the typical representative of the \textit{Inverse Elastography's Problem}, again for a bounded, two-dimensional domain $Ω.$ The equivalent extremal problem is presented, through a suitable minimizing functional, under the additional assumption that the two-valued conductivity function $γ(x)$ belongs to $BV$ space; $γ\in L^{\infty}\cap BV.$ Inspired by a concept introduced in \cite{Fer2011}, the reconstruction of the function $γ(x)$ is examined from the surface measurements in the form of the \textit{Dirichlet-to-Neumann} operator. en
heal.advisorName Χαραλαμπόπουλος, Αντώνιος el
heal.committeeMemberName Αρβανιτάκης, Αλέξανδρος el
heal.committeeMemberName Γιαννακάκης, Νικόλαος el
heal.committeeMemberName Χαραλαμπόπουλος, Αντώνιος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών el
heal.academicPublisherID ntua
heal.numberOfPages 83 σ. el
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής