dc.contributor.author |
Μαρκάκη, Βασιλική
|
el |
dc.contributor.author |
Markaki, Vasiliki
|
en |
dc.date.accessioned |
2017-06-12T10:11:42Z |
|
dc.date.issued |
2017-06-12 |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/45029 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.7181 |
|
dc.description |
Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Εφαρμοσμένες Μαθηματικές Επιστήμες” |
el |
dc.rights |
Default License |
|
dc.subject |
Μερικές διαφορικές εξισώσεις |
el |
dc.subject |
Μέτρο Radon |
el |
dc.subject |
Φραγμένη κύμανση |
el |
dc.subject |
Ελαστογραφία |
el |
dc.subject |
Αγωγιμότητα |
el |
dc.subject |
Αντίστροφο πρόβλημα |
el |
dc.subject |
Partial differential equations |
en |
dc.subject |
Radon measure |
en |
dc.subject |
Bounded variation |
en |
dc.subject |
Conductivity |
en |
dc.subject |
Elastography |
en |
dc.subject |
Inverse problem |
en |
dc.title |
Τεχνικές Επίλυσης Αντίστροφων Προβλημάτων Με Βάση Τις Συναρτήσεις Φραγμένης Κύμανσης |
el |
dc.title |
Investigation Of Inverse Problems On The Basis Of Bounded Variation Functions |
en |
heal.type |
masterThesis |
|
heal.classification |
Applied mathematics |
en |
heal.classificationURI |
http://id.loc.gov/authorities/subjects/sh93002523 |
|
heal.dateAvailable |
2018-06-11T21:00:00Z |
|
heal.language |
el |
|
heal.access |
embargo |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2017-02-21 |
|
heal.abstract |
The present work has a first part pertaining to the presentation of the fundamental and cornerstone aspects of the inverse conductivity problem: the existence, uniqueness and stability of the solution of this problem. In the sequel, the master thesis involves the development of inversion techniques concerning the solvability of typical inverse dynamic problems in Elastography. The novel concept consists in exploiting and developing analysis from the framework of bounded variation fun\-ctions ($BV$ functions), which represent accurately the discontinuous nature of the inhomogeneities under reconstruction.\
In Chapter $\S2$ \textit{Calderón's Inverse Problem} is presented. The conductivity equation $\nabla \cdot σ\nabla u=0$ is studied for a bounded, two-dimensional domain $Ω$ and an anisotropic $L^{\infty}-$ smooth conductivity $σ.$ The work of \cite{Astala2005a,Astala2006a} is followed, ac\-cor\-ding to which the \textit{Dirichlet-to-Neumann} operator determines uniquely the bounded measurable condu\-cti\-vity $σ$ in a \footnotemark{constructive} manner. This gives a positive answer to a question of \textit{A.P.Calderón} from 1980. In higher dimensions the problem remains open.\
\footnotetext{ through the construction of \textit{complex geometric optics solutions, CGO}}
Chapter $\S3$ is devoted to the study of the hyperbolic conductivity equation, as the typical representative of the \textit{Inverse Elastography's Problem}, again for a bounded, two-dimensional domain $Ω.$ The equivalent extremal problem is presented, through a suitable minimizing functional, under the additional assumption that the two-valued conductivity function $γ(x)$ belongs to $BV$ space; $γ\in L^{\infty}\cap BV.$ Inspired by a concept introduced in \cite{Fer2011}, the reconstruction of the function $γ(x)$ is examined from the surface measurements in the form of the \textit{Dirichlet-to-Neumann} operator. |
en |
heal.advisorName |
Χαραλαμπόπουλος, Αντώνιος |
el |
heal.committeeMemberName |
Αρβανιτάκης, Αλέξανδρος |
el |
heal.committeeMemberName |
Γιαννακάκης, Νικόλαος |
el |
heal.committeeMemberName |
Χαραλαμπόπουλος, Αντώνιος |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
83 σ. |
el |
heal.fullTextAvailability |
true |
|