HEAL DSpace

Pipelined MapReduce: A Decoupled MapReduce RunTime for Shared-Memory Multi-Proccessors

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ηλιάκης, Κωνσταντίνος el
dc.contributor.author Iliakis, Konstantinos en
dc.date.accessioned 2017-07-18T07:11:06Z
dc.date.available 2017-07-18T07:11:06Z
dc.date.issued 2017-07-18
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/45239
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.14042
dc.rights Default License
dc.subject Συστήματα Υψηλών Επιδόσεων el
dc.subject Παράλληλος Προγραμματισμός el
dc.subject Συναρισιακός Προγραμματισμός el
dc.subject Πολυπύρηνοι επεξεργαστές el
dc.subject Τεχνική Διοχέτευσης Λογισμικού el
dc.subject MapReduce en
dc.subject Multi-processors en
dc.subject Parallel Computing en
dc.subject Software Pipeline en
dc.subject Phoenix Library el
dc.title Pipelined MapReduce: A Decoupled MapReduce RunTime for Shared-Memory Multi-Proccessors en
dc.contributor.department Microprocessors and digital systems laboratory el
heal.type bachelorThesis
heal.classification Computer science en
heal.classification High performance computing--Congresses en
heal.classificationURI http://id.loc.gov/authorities/subjects/sh89003285
heal.classificationURI http://id.loc.gov/authorities/subjects/sh2008105591
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2017-03-13
heal.abstract Modern multi-processors embody up to hundreds of cores in a single chip, in an attempt to attain TFlops/sec performance. Many subtle programming frameworks have emerged in order to facilitate the development of parallel, efficient and scalable applications. The MapReduce programming model, after having indisputably, demonstrated its usability and effectiveness in the area of Large-Scale Distributed Systems computation, has been adapted to the needs of shared-memory multi-core and multi-processor systems. The scope of this thesis is to enhance the existing, traditional MapReduce Architecture, by decoupling Map from Combine into two separate phases. These independent phases are interleaved and executed in parallel. We argue that, interleaving Map and Combine computation, leads to more efficient hardware utilization and competent run-time improvements. A high-performance, shared queue data structure has been introduced in order to pipeline intermediate data from Map to Combine phase and allow for concurrent execution. Furthermore, an Inter-thread communication aware thread-to-cpu binding policy has been designed to minimize data exchange overhead. The Pipelined Architecture is evaluated into two inherently diverse multi-core systems and demonstrates execution speedup of up to 5.34X compared to a state-of-the art MapReduce Library, Phoenix++. Nevertheless, we observe that not all type of workloads profit from our Pipelined Architecture and reason about the application characteristics that define its suitability to our Runtime. en
heal.advisorName Ξύδης, Σωτήριος el
heal.committeeMemberName Σούντρης, Δημήτριος el
heal.committeeMemberName Κοζύρης, Νεκτάριος el
heal.committeeMemberName Πεκμεστζή, Κιαμάλ el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών. Εργαστήριο Υπολογιστικών Συστημάτων el
heal.academicPublisherID ntua
heal.numberOfPages 104 σ. el
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής