dc.contributor.author |
Παπαγεωργίου, Αναστάσιος
|
el |
dc.contributor.author |
Papageorgiou, Anastasios
|
en |
dc.date.accessioned |
2017-09-13T09:27:52Z |
|
dc.date.available |
2017-09-13T09:27:52Z |
|
dc.date.issued |
2017-09-13 |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/45603 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.14549 |
|
dc.rights |
Default License |
|
dc.subject |
Πολυωνυμικός χάος |
el |
dc.subject |
Περιβάλλον OpenFOAM |
en |
dc.subject |
Σχεδιασμός με Αβεβαιότητες |
el |
dc.subject |
Polynomial Chaos |
en |
dc.subject |
Computational Fluid Dynamics |
en |
dc.subject |
CFD |
en |
dc.title |
Πρόλεξη Ασυμπίεστων Ροών υπό Αβεβαιότητες με τη Μέθοδο Αναπτύγματος Πολυωνυμικού Χάους. Μαθηματική Διατύπωση, Προγραμματισμός και Εφαρμογές σε Περιβάλλον OpenFOAM |
el |
dc.title |
Prediction of Incompressible Flows under Uncertainties
using the Intrusive Polynomial Chaos Expansion Method.
Mathematical Formulation, Programming and
Implementation in the OpenFOAM Environment |
|
heal.type |
bachelorThesis |
|
heal.classification |
Υπολογιστική Ρευστοδυναμική |
el |
heal.language |
el |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2017-07-07 |
|
heal.abstract |
Η διπλωματική αυτή εργασία εστιάζει στη μαθηματική διατύπωση και υλοποίηση, μέσω κατάλληλου λογισμικού της μεθόδου αναπτύγματος πολυωνυμικού χάους, και ειδικά της επεμβατικής παραλλαγής της σε ασυμπίεστες ροές (στρωτές και τυρβώδεις). Σκοπός της μεθόδου είναι η προσομοίωση της στοχαστικότητας της ροής λόγω στοχαστικών μεταβολών των αβέβαιων μεταβλητών εισόδου. |
el |
heal.abstract |
This diploma thesis focuses on the mathematical formulation and implementation,
through the development of the appropriate software in the OpenFOAM environ-
ment, of the Polynomial Chaos Expansion method (PCE), more specifically the
intrusive variation (iPCE) in steady flows of incompressible fluids. The main pur-
pose of the method is the simulation of the uncertainty of the flow due to stohastic
changes in the values of the environmental variables. According to PCE, each uncer-
tain variable is represented as a polynomial expansion with orthogonal polynomials,
which depend on the stohastic distribution of the input uncertain variables. The
method is referred to as intrusive, because the expanded uncertain flow fields are
replaced into the flow p.d.e.’s and new equations are produced. As a result, the
number of the p.d.e.’s, to be solved to compute the fields of the coefficients of PCE,
increases.
The applications this diploma thesis is dealing with, concern both external and inter-
nal aerodynamics. It is assumed that there is only one uncertain input variable and
the governing equations for laminar flow are formulated for various polynomial chaos
orders. The results are compared with other methods such as the non-Intrusive PCE
and Monte-Carlo and the programmed iPCE method is thus assessed. The results
are very good, since the desired precision is accomplished with less computational
cost compared to the other methods. Afterwards, turbulent flows are computed,
vii
with the assumption of non-stohastic turbulence. In other words, it is assumed that
the turbulent viscosity is not influenced by the stohastic change of the environmen-
tal variables. The results are satisfactory, however under some conditions. The
codes that are programmed concern 1
st
and 2
nd
chaos order and one uncertain input
variable. The segregated solution method is used in the codes, thus the continuity
equation solved decoupled from the momentum equations. |
|
heal.advisorName |
Γιαννάκογλου, Κυριάκος |
el |
heal.committeeMemberName |
Αρετάκης, Νικόλαος |
el |
heal.committeeMemberName |
Μαθιουδάκης, Κωνσταντίνος |
el |
heal.committeeMemberName |
Γιαννάκογλου, Κυριάκος |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Μηχανολόγων Μηχανικών. Τομέας Ρευστών. Εργαστήριο Θερμικών Στροβιλομηχανών |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
110 σ. |
el |
heal.fullTextAvailability |
true |
|