heal.abstract |
Ένα από τα σημαντικότερα θέματα που καλούνται να αντιμετωπίσουν οι εγκαταστάσεις επεξεργασίας λυμάτων είναι η αποτελεσματική απομάκρυνση αζώτου και φωσφόρου. Σε αυτή την κατεύθυνση έχουν αναπτυχθεί και εφαρμοστεί βιολογικές μέθοδοι απομάκρυνσης οι οποίες παρουσιάζουν θετικά αποτελέσματα, η αποδοτική λειτουργία των οποίων όμως απαιτεί την ύπαρξη σημαντικής ποσότητας ευκολοδιασπάσιμου οργανικού άνθρακα. Στα τυπικά αστικά λύματα, το διαθέσιμο ευκολοδιασπάσιμο BOD σπάνια επαρκεί για την κάλυψη των αναγκών της βιολογικής απομάκρυνσης. Μια λύση είναι η προσθήκη εξωτερικής πηγής άνθρακα, η οποία όμως αυξάνει το λειτουργικό κόστος της εγκατάστασης. Παράλληλα, η πλειοψηφία των μονάδων επεξεργασίας διαθέτουν δεξαμενες πρωτοβάθμιας καθίζησης μέσω των οποίων απομακρύνεται ένα μεγάλο ποσοστό των αιωρούμενων στερεών και του συνολικού BOD. Η ιλύς που απομακρύνεται έτσι απαιτεί κατάλληλη επεξεργασία πριν την τελική της διάθεση ενώ μέρος των θρεπτικών που εμπεριέχει επανακυκλοφορεί με τα στραγγίδια στην βιολογική επεξεργασία. Με την αναερόβια υδρόλυση της πρωτοβάθμιας ιλύος είναι δυνατή η παραγωγή σημαντικής ποσότητας ευκολοδιασπάσιμου BOD ενώ παράλληλα μειώνεται ο όγκος της ιλύος που απαιτεί τελική επεξεργασία.Έτσι, η βελτιστοποίηση ενός συστήματος αναερόβιας υδρόλυσης αποτελεί αντικείμενο μεγάλου ενδιαφέροντος καθώς είναι εφικτή η αποδοτικότερη απομάκρυνση θρεπτικών με μικρό οικονομικό κόστος. Για την διερεύνηση της επίδρασης των λειτουργικών παραμέτρων στην απόδοση της υδρόλυσης της πρωτοβάθμιας ιλύος, τα τελευταία χρόνια έχουν διεξαχθεί μια σειρά διπλωματικών εργασιών στο Εργαστήριο Υγειονομικης Τεχνολογίας της Σχολης Πολιτικών Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου(Ε.Μ.Π). Η παρούσα διπλωματική αποτελεί συνέχεια αυτης της δουλειάς και αντικείμενό της αποτελεί η επίδραση της θερμοκρασίας στην υδρόλυση της πρωτοβάθμιας ιλύος και στην παραγωγή πτητικών λιπαρών οξέων (VFAs). |
el |
heal.abstract |
One of the most
important issues
in the science of wastewater treatment
is the
effective removal of nitrogen and phosphorus. In this direction
the development and
application of
Biological
Nutrient
Removal
processes
have present
ed
positive results,
yet
their
efficient op
eration requires the
presen
c
e
of a significant amount of readily
degradable organic
carbon
. In typical urban waste water, the
present
easily
degradable BOD is
r
arely sufficient to meet the biological removal needs.
A
solution
to this problem is the
add
itio
n of
an external carbon source,
which will lead however
to increased
operati
on
cost
s.
On another matter
, the majority of treatment plants
posses
s
primary sedimentation tank
s
where
a large percentage of the suspended
solids and total
BOD is
removed.
The pro
duced sludge
require
s
treatment prior to
it’s
final disposal while some of the nutrients contained recirculate with leachates
towards
the biological treatment
procecces
.
With the anaerobic hydrolysis of primary sludge it is possible to produce a
considera
ble amount of readily degradable BOD while
simultaneously
reducing the
volume of sludge requiring final treatment. Thus,
the
optimization of an anaerobic
hydrolysis system is of great interest as
a
more efficient nutrient removal is possible
at a low cost.
To investigate the effect of
vari
o
us
functional parameters on
the
efficiency of said system
, a number of diploma theses have been carried out in
recent years at the
Sanitary Engineering Laboratory
of the School of Civil Engineering
of the National Technic
al University of Athens (NTUA). The present diploma
thesis
is
a continuation of this work and its object
ive is to investigate
the
influence
of
temperature on
the
hydrolysis of primary sludge and the production of volatile fatty
acids (VFAs)
.
For the purpo
se
s
of th
is
work, an anaerobic hydrolysis system was constructed and
operated at the
Sanitary Engineering Laboratory
, which was fed daily with primary
sludge from the Psittalia Wastewater Treatment Plant. The
system operated over a
period of
about five mon
ths old, and it was divided into three sub
-
stages. During the
first operating phase the system
operated at a temperature of 30°
C
while Solid
Retention Time (SRT)
was 4 days. During the second operating phase, the system
operated
at the same temperature
wit
h
a 2
-
day
SRT
, while during the third operating
phase t
he system was operating at a temperature of 13.5°
C
with an SRT of 2 days
.
During all operating phases, the Hydraulic Retention Time (HRT) was the same as the
SRT.
T
he experimental
results of this stu
dy
showed that methanogenesis in not inhibited
at an operating temperature of 30°
C,
even
for the relatively short
retention times
of
2 and 4 days. The hydrolysis yield at this temperature was found to be 106 and 58
mg COD
s
oluble
/ gr VS
in
for the
solid ret
ention times
of 2 and 4 days, respectively. The
hydrolysis yield at the operating temperature of 13.5
°C was 46 mg COD
s
oluble
/ gr VS
in
.
The yield o
f volatile fatty acid production
at
the temperatures of 13.5 and 30°
C for
a
2
-
day
SRT
was 48.7 and 55.4 mg CO
D
VFAs
/ gr VS
in
, respectively. It is noted that the
corresponding acetic acid production yields were 18.8 and 11.7 mg COD
AC
/ g VS
in
.The low yield
of acetic acid production
at the
oper
a
ting temperature of 30°
C is due
to its consumption by oxiotrophic meth
anobacteria.
By utilizing and comparing data from the earlier surveys carried out at the
Sanitary
Engineering Laboratory
of the NTUA
w
ith the results of this thesis the following are
derived. The kinetics of the hydrolysis of the primary sludge can be con
sidered first
order
and described by the Arrhenius equation. The activation
energies
for two
different types of
primary sludge were
found
to be
50.58 and 46 kJ / mol
respectively. When methanogenesis is inhibited, the hydrolysis yield exponentially
increas
es with temperature and
is en
hanced
at
longer
solid retention times
. For
temperatures close to the mesophilic area, the
development
of oxiotrophic bacteria,
which is enhanced
at
longer retention times
, results in the consumption of easily
degradable BOD, w
hich is almost exclusively of acetic acid, and consequently low
er
yields of hydrolysis and VFA
production. Hydrolysis
appears to be the regulatory
phase
for
anaerobic processes, therefore the production of volatile fatty acids
depends on the kinetics
of hy
drolysis
. For
an SRT of 2 days
, it is estimated that
2
×10
3
kh mg of COD
VFAs
are produced for every
1 gram of VS
within
the primary
sludge
,
where kh is the hydrolysis constant
that co
r
responds
the digester's operating
temperature.
Finally,
for systems with
an
SRT
of days
or less
,
the
highest
operating temperature
within the studies for which
methanogen
esis
was not reported was at 27°
C.
Thus,
t
he optimal operating temperature
for an anaerobic
hydrolysis system may be close
to this value |
|