dc.contributor.author | Μουτζουρέλλης, Ελευθέριος | el |
dc.contributor.author | Moutzourellis, Eleftherios | en |
dc.date.accessioned | 2018-02-15T11:31:43Z | |
dc.date.available | 2018-02-15T11:31:43Z | |
dc.date.issued | 2018-02-15 | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/46524 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.14786 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Cassini | en |
dc.subject | Geršgorin | en |
dc.subject | Brauer | en |
dc.subject | Brualdi | en |
dc.subject | Ostrowski | en |
dc.subject | Ιδιοτιμές | el |
dc.subject | Ιδιοδιανύσματα | el |
dc.subject | Δίσκοι | el |
dc.subject | Οβάλ | el |
dc.subject | Λημνίσκοι | el |
dc.subject | Ανάλυση πινάκων | el |
dc.title | Δίσκοι Geršgorin και Συναφή Χωρία | el |
heal.type | bachelorThesis | |
heal.classification | Μαθηματικά | el |
heal.language | el | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2017-10-25 | |
heal.abstract | In this diploma thesis, we will try to approximate the spectrum of complex square matrices by means of some special sets in the field of complex numbers, that are directly dependent on the diagonal elements of the matrix and indirectly from the rest elements. After we first introduce the reader to some basic linear algebra and matrix theory, we will look at the interdependence of the strictly diagonally dominated matrices with these sets. The first theorem that we will present in detail is the Geršgorin theorem. This theorem generates the famous Geršgorin discs, whose union gives the Geršgorin set, an extraordinary, unique and useful set that includes all the eigenvalues of a random complex square table. Then we will quote many extentions of the above theorem via graph theory, borrowing data from the directed graph of matrices. Additionally, we will write about the norm derivation of Geršgorin theorem and examine some of its analytical extensions. Furthermore, we will generalize the eigenvalue inclusion disks to the Cassini ovals and later to some higher order lemniscates. The Brauer set stems from the union of these ovals, while the union of the later, under certain conditions, is defined as the Brualdi set. All sets enclose the spectrum of any matrix, so our penultimate task is to compare them and draw conclusions not only about the area they occupy at the complex field, but also about the computational work that is needed to estimate them. Finally, we will present corollaries and more recent results in an attempt to define the previous sets' sharpness. | en |
heal.advisorName | Ψαρράκος, Παναγιώτης | el |
heal.committeeMemberName | Αρβανιτάκης, Αλέξανδρος | el |
heal.committeeMemberName | Κανελλόπουλος, Βασίλειος | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Τομέας Μαθηματικών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 74 σ. | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: