dc.contributor.author |
Πολυδεύκη, Γεωργία
|
el |
dc.contributor.author |
Polydefki, Georgia
|
en |
dc.date.accessioned |
2018-03-22T09:55:22Z |
|
dc.date.available |
2018-03-22T09:55:22Z |
|
dc.date.issued |
2018-03-22 |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/46753 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.7708 |
|
dc.description |
Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Φυσική και Τεχνολογικές Εφαρμογές” |
el |
dc.rights |
Default License |
|
dc.subject |
Οπτική παγίδευση |
en |
dc.subject |
Μικρορευστονικά κυκλώματα |
el |
dc.subject |
Μικρορευστονικές διατάξεις |
el |
dc.subject |
Ρευστομηνανική |
el |
dc.subject |
Fluid Mechanics |
en |
dc.subject |
Optical trapping |
en |
dc.subject |
Microfluidics Fluid Dynamics |
en |
dc.title |
Αξιολόγηση καινοτόμων μικρορευστονικών διατάξεων με τη μέθοδο της οπτικής παγίδευση |
el |
heal.type |
masterThesis |
|
heal.classification |
Φυσική |
el |
heal.language |
el |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2018-02-23 |
|
heal.abstract |
H οπτική παγίδευση αποτελεί μία πρωτοποριακή μη-επεμβατική τεχνική η οποία παρέχει τη δυνατότητα του ανέπαφου χειρισμού της ύλης, σε μικρομετρικές και νανομετρικές κλίμακες, χρησιμοποιώντας τις ιδιότητες του φωτός. Ο συνδυασμός της μεθόδου της οτικής παγίδευσης με τα μικρορευστονικά κυκλώματα μπορεί να δώσει ένα πλήρες εργαστήριο μικρομετρικής κλίμακας με πολλές δυνατότητες. Το κυρίως θέμα της εργασίας αφορούσε στην αξιολόγηση μικρορευστονικών διατάξεων σε συνδυασμό με την τεχνική της οπτικής παγίδευσης. Στις μελέτες που έγιναν με τη μέθοδο της προσομοίωσης, εξετάστηκε η συμπεριφορά ενός ρευστού (συγκεκριμένα νερού) κατά τη διέλευση του μέσα από τα μικρορευστονικά κανάλια. Η προσπάθειά της παρουσίασης με περιεκτικό και κατανοητό τρόπο των αποτελεσμάτων που πάρθηκαν από τις προσομοιώσεις, σε συνδυασμό με το προσφερόμενο θεωρητικό υπόβαθρο από τη μηχανική των ρευστών και την οπτική, καθώς και με τα εξαγόμενα των πειραμάτων που έλαβαν χώρα για το σκοπό αυτό, συγκεντρώνεται στο παρόν σύγγραμμα. |
el |
heal.abstract |
Optical trapping is an innovative, non-invasive technique for manipulating micro/nano-scale particles by using the properties of light. A highly focused monochromatic laser beam provides the optical forceas a result of the change in its momentum. Optical forces turned out to be a very flexible tool for trapping and manipulating microstructures.
At the same time microfluidics is an emerging field in technology which deals with the behavior and precise control of fluids samples that are geometrically constrained to a small, typically sub-millimeter, scale. The major goal of this field of technology is the mass manufacturing of so-called LOC (lab-on-a-chip) devices that integrate one or several laboratory functions on a single integrated circuit of only millimeters to a few square centimeters. The combination of the optical trapping technique and microfluidics can provide a fully equipped laboratory at micro and nano scale with many applications.
In the first chapter of this thesis a reference to the origins and discovery of the optical forces is being made as well as to the development of optical trapping and its applications in many scientific disciplines. After a brief historical overview on different types of optical trappings, the laws of wave and geometrical optics and their usage in describing the optical forces are being analyzed.
Microfluidics as a subcategory of fluid mechanics, the physical laws and principles that govern incompressible fluid flow and how they are being applied to microminiaturized devices are topics which are being included in the second chapter of this thesis. The techniques and materials which are used in order to build a microfluidic system in addition to their advantages and disadvantages are also being mentioned.
The main topic of this thesis was the simulations of a fluid flowing through a microfluidic channel in order to determine the behavior and the velocity profile of the fluid. The applied simulation software which was used was Comsol Multiphysics. In chapter three the process of building the 3D model which was used (geometry, symmetries, shape), the discretization of it via finite element method and characteristic equations of fluid dynamics which govern fluid motion of the liquid in the microfluidic devices are included. Each time a new parameter is being added to
8
the system of equations the theoretical background which is based on is also being analyzed.
This chapter also includes the simulation outcomes that were quite expected since they agreed with the law of conservation of mass. In particular a reduction in the channel’s dimensions leads to an increase in fluid’s velocity. It was also observed that the velocity’s magnitude close to the entrance of the channel is less than the sum of the magnitudes of the liquid’s velocities when the latter flows through the main channels of the device. This phenomenon also can be explained with the principle of mass conservation.
Finally the maximum velocities of equal-areas cross sections of the channels are listed and there has also been a comparison between them. Τhe deviance of this comparison was unsurprising because of the numerical errors that result from discretization process.
The details of the experimental setupused in order for the microfluidics systems to be tested and evaluated through the process of optical trapping are included in chapter four. The outcomes of the experiment were relatively close by those yielded by simulation, especially for channel width and height values less than 15 μm. For channel dimension values, larger than 15 μm the simulation results were not consistent with the experimental ones.This discrepancy can be explained by the flow resistance theory.
Information and results of the simulations which pertained to microfluidic channels of each and every dimension haven been placed in the appendix. This set of information is relevant to velocity profile of the liquid as a function of channel’s height, velocity field in the xy plane as well as the minimum and the maximum speed lengthwise along the line passing through the centre of the main channel. |
en |
heal.advisorName |
Μακροπούλου, Μυρσίνη |
el |
heal.committeeMemberName |
Μακροπούλου, Μυρσίνη |
el |
heal.committeeMemberName |
Μάρκου, Χρήστος |
el |
heal.committeeMemberName |
Τσιγαρίδας, Γεώργιος |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
147 σ. |
el |
heal.fullTextAvailability |
true |
|