HEAL DSpace

Multiscale Simulations of Discotic Materials

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ziogos, Orestis George en
dc.contributor.author Ζιώγος, Ορέστης Γεώργιος el
dc.date.accessioned 2018-04-20T10:10:26Z
dc.date.available 2018-04-20T10:10:26Z
dc.date.issued 2018-04-20
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/46855
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.2923
dc.rights Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/gr/ *
dc.subject Δισκόμορφα υλικά el
dc.subject Νανογραφένιο el
dc.subject Οργανικά ηλεκτρονικά el
dc.subject Μοριακή Δυναμική el
dc.subject Θεωρία Συναρτησιακού Ηλεκτρονικής Πυκνότητας el
dc.subject Discotic materials en
dc.subject Nanographene en
dc.subject Organic electronics en
dc.subject Molecular Dynamics en
dc.subject Density Functional Theory en
dc.title Multiscale Simulations of Discotic Materials en
dc.title Προσομοιώσεις Πολλαπλής Κλίμακας Δισκόμορφων Υλικών el
dc.contributor.department Τομέας ΙΙΙ - Επιστήμης και Τεχνικής των Υλικών el
heal.type doctoralThesis
heal.classification MATERIALS SCIENCE en
heal.classification PHYSICS en
heal.classification COMPUTATIONAL PHYSICS en
heal.classificationURI http://data.seab.gr/concepts/840868f9d668cd136ec6f074902084034906c943
heal.classificationURI http://data.seab.gr/concepts/ac3478d69a3c81fa62e60f5c3696165a4e5e6ac4
heal.classificationURI http://data.seab.gr/concepts/09e8c435d248d8bcc197638f445400edf42a8b80
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2018-03-19
heal.abstract Soluble disc-shaped organic molecules with the ability to self-organize into intricate supramolecular assemblies constitute a very promising materials family for a plethora of applications. In the case of polyaromatic hydrocarbon (PAH) mesogens, delocalized π interactions enable such materials to be used as active media for organic electronic applications. This doctoral dissertation is primarily focused on multiscale simulations of discotic materials by means of ab-initio Density Functional Theory (DFT) calculations and empirical Molecular Mechanics and Molecular Dynamics (MD) simulations for the determination of structure-property relationships, ranging from electronic and charge transfer properties at the quantum level of description to structural, mechanical, and dynamical characterization of periodic bulk systems at the nanoscale regime. As regards systems under study, molecules belonging to the so-called nanographene family are examined, with particular focus placed on the hexa-peri-hexabenzocoronene (HBC) molecule and its derivatives, utilizing a variety of peripheral functional groups. Quantum mechanical (QM) calculations are employed for the conduction of comparative studies involving molecules from the very smallest discotic unit, i.e. the benzene molecule, up to large polyaromatic assemblies, covalently-linked into forming articulate discotic “super-molecules”. Electronic and charge transfer properties are examined at the single molecule and molecular dimer levels of description via ground-state DFT calculations. Alkyl-substituted HBC derivatives, either in non-polar or polar variants by means of iodine atom peripheral functionalization, are examined through empirical MD simulations, aiming at the determination of structural, mechanical, and dynamical properties for given temperature and pressure conditions. PAH stacking patterns are thoroughly examined, a structural feature of paramount importance, since QM studies both in this work and in the literature confirm the direct link between charge transfer capabilities and core packing motifs. Amphiphilic, “Janus-type” HBC derivatives are also examined by means of MD simulations. Mesogens under study carry both hydrophilic and hydrophobic side chains, thus enabling the formation of lamellar molecular crystals. The effect of temperature rise on structural and dynamical properties is examined, while gaining an atomistic insight of the melting process for such materials. Atomistic MD simulations are also put to use for the examination of molecular crystals of functionalized extended discotics, namely the superphenalene C96 and the tetragonal C132 molecules, characterized by a 3-fold and 4-fold expanse, respectively, compared to HBC. Apart from single core discotics, covalently-linked assemblies in the form of the HBC dumbbell and star-shaped, tri-arm “super- molecules” with HBC, C96, and C132 terminal cores are modeled by means of MD simulations, elucidating their tendency to form structurally robust chiral molecular nanowires, densely packed into hexagonal molecular crystals. A multiscale methodology is adopted, using information from ab-initio DFT calculations, in order to provide insight for possible charge transfer mechanisms pertinent to such assemblies. As regards initial configurations to be used as input for atomistic simulations, in cases where crystallographic constructions are not applicable or desirable, a hybrid MC bond-by-bond growth methodology is proposed and utilized, capable of growing soft nanophases out of rigid nanostructured areas in a given simulation domain. en
heal.sponsor Ίδρυμα Κρατικών Υποτροφιών el
heal.advisorName Theodorou, Theodoros (Doros) en
heal.committeeMemberName Theodorou, Theodoros (Doros) en
heal.committeeMemberName Tsetseris, Leonidas en
heal.committeeMemberName Pissis, Polykarpos en
heal.committeeMemberName Floudas, George en
heal.committeeMemberName Charitidis, Costas en
heal.committeeMemberName Likos, Christos en
heal.committeeMemberName Harmandaris, Vaggelis en
heal.academicPublisher Σχολή Χημικών Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 235
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα