HEAL DSpace

Contribution to force field modeling & energy minimization of nanostructures

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatzieleftheriou, Stavros en
dc.date.accessioned 2018-05-02T09:43:18Z
dc.date.issued 2018-05-02
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/46915
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.2876
dc.rights Default License
dc.subject Energy minimization en
dc.subject analytic hessian matrix en
dc.subject potential energy finite elements en
dc.subject molecular mechanics en
dc.subject Ελαχιστοποίηση δυναμικής ενέργειας el
dc.subject Αναλυτικός υπολογισμός εσσιανού μητρώου el
dc.subject Πεπερασμένα στοιχεία δυναμικής ενέργειας el
dc.subject Μοριακή δυναμική el
dc.subject Μοριακή μηχανική el
dc.subject molecular dynamics en
dc.title Contribution to force field modeling & energy minimization of nanostructures en
dc.contributor.department Institute of Structural Analysis and Antiseismic Research el
heal.type doctoralThesis
heal.classification Nanotechnology en
heal.classification Modeling en
heal.classification Chemical engineering--Mathematics en
heal.classificationURI http://skos.um.es/unescothes/C02659
heal.classificationURI http://id.loc.gov/authorities/childrensSubjects/sj96005954
heal.classificationURI http://id.loc.gov/authorities/subjects/sh2009118797
heal.dateAvailable 2019-05-01T21:00:00Z
heal.language en
heal.access embargo
heal.recordProvider ntua el
heal.publicationDate 2018-03
heal.abstract The potential energy of molecules and nanostructures is commonly calculated in the molecular mechanics formalism by superimposing bonded and nonbonded atomic energy terms. In this work a new, generalized numerical simulation is presented for studying the mechanical behaviour of three-dimensional nanostructures at the atomic scale. The energy gradient and Hessian matrix of such assemblies are usually computed numerically; a potential energy finite element model is proposed herein where these two components are expressed analytically. The global tangent stiffness matrix for any nanostructure is formed as an assembly of the generalized finite elements and is directly equivalent to the Hessian matrix of the potential energy. The advantages of the proposed model are identified both in terms of accuracy and computational efficiency. In the case of popular force fields (e.g. CHARMM) the computation of the Hessian matrix by implementing the proposed method is of the same order to that of the energy computation. Furthermore a new energy minimization strategy is presented, that achieves excellent convergence and is suitable for dealing with large-scale molecular systems. The basis of the proposed minimization strategy (SimNano) is a trust region algorithm based on exact second order derivative information. In order to present the efficiency of the proposed energy minimization strategy several test examples are examined and the results achieved are compared with those obtained by one of the most popular molecular simulations software, i.e. the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). The results indicate that the proposed minimization strategy depict superior convergence properties compared to those of the algorithms that are generally employed in the field (i.e. the non-linear conjugate gradient, Broyden– Fletcher–Goldfarb–Shanno (BFGS) algorithms, etc.). Finally an application in computational material science (stress strain curve and computation of elastic moduli of atactic polystyrene based on the quasi-harmonic approximation) that benefits from fast and rigorous energy minimization is examined. en
heal.advisorName LAGAROS, NIKOS en
heal.committeeMemberName Lagaros, Nikos en
heal.committeeMemberName Theodorou, Doros en
heal.committeeMemberName Koumousis, Vlasis el
heal.committeeMemberName Provatidis, Christopher en
heal.committeeMemberName Bathe, Mark en
heal.committeeMemberName Papadopoulos, Vissarion en
heal.committeeMemberName Papathanasiou, Athanasios en
heal.academicPublisher Σχολή Πολιτικών Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 211
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής