HEAL DSpace

Προσθήκη Ορόφου σε Υφιστάμενη Κατασκευή και Σχεδιασμός Ορόφου με Σύνθετα Υλικά και με Μεταλλική Κατασκευή

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Φίλου, Βασιλική el
dc.contributor.author Filou, Vasiliki en
dc.date.accessioned 2018-05-03T10:17:56Z
dc.date.available 2018-05-03T10:17:56Z
dc.date.issued 2018-05-03
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/46920
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.8560
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Δομοστατικός Σχεδιασμός και Ανάλυση των Κατασκευών” el
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Δομική προσθήκη el
dc.subject Υφιστάμενη κατασκευή el
dc.subject Μεταλλική κατασκευή el
dc.subject Σύνθετα υλικά el
dc.subject Σχεδιαστικό πρόγραμμα SAP el
dc.subject Structural engineering en
dc.subject Existing construction en
dc.subject Composite materials en
dc.subject Steel construction en
dc.subject SAP en
dc.title Προσθήκη Ορόφου σε Υφιστάμενη Κατασκευή και Σχεδιασμός Ορόφου με Σύνθετα Υλικά και με Μεταλλική Κατασκευή el
heal.type masterThesis
heal.classification ΔΟΜΙΚΗ ΜΗΧΑΝΙΚΗ el
heal.classificationURI http://data.seab.gr/concepts/02ff9f78ea1b299eed7001f9a8e3902c523bf335
heal.language el
heal.access campus
heal.recordProvider ntua el
heal.publicationDate 2018-02-05
heal.abstract Στα πλαίσια της παρούσας διπλωματικής εργασίας μελετάται η προσθήκη καθ’ ύψος ορόφου σε υφιστάμενη κατασκευή από οπλισμένο σκυρόδεμα, καθώς και η σύγκριση δύο εναλλακτικών τρόπων σχεδιασμού και κατασκευής. Η πρώτη λύση, εξετάζει τη προσθήκη ορόφου με μεταλλική κατασκευή, ενώ η δεύτερη την προσθήκη ορόφου από σύνθετα υλικά. Στα πλαίσια αυτής της μελέτης, απαιτήθηκε η προσομοίωση ολόκληρου του κτιρίου η οποία έγινε με τη βοήθεια του στατικού προγράμματος SAP 2000. Το υπό μελέτη κτίριο αποτελεί μια διώροφη οικοδομή, για την προσομοίωση της οποίας χρησιμοποιήθηκαν στοιχεία ορθογωνικών διατομών για τα υποστυλώματα, στη βάση των οποίων θεωρήθηκαν αρθρωτές στηρίξεις, και πλακοδοκών για τις δοκούς. Με γνώμονα τον ξυλότυπο υπολογίστηκαν οι μόνιμες και κινητές φορτίσεις οι οποίες μεταφέρονται από τις πλάκες στις δοκούς και υπολογίστηκαν τα αντίστοιχα συνεργαζόμενα πλάτη της κάθε πλακοδοκού. Τα στοιχεία υποστυλωμάτων και πλακοδοκών θεωρήθηκαν αβαρή κατά την εισαγωγή τους στο πρόγραμμα και το ίδιο βάρος προστέθηκε σαν εξωτερική φόρτιση ενώ, οι δυσκαμψίες των στοιχείων μειώθηκαν σύμφωνα με τις παραδοχές του Ε.Α.Κ. 2000 θεωρώντας ρηγματωμένες διατομές σταδίου ΙΙ. Η πρώτη περίπτωση που εξετάστηκε ήταν η προσθήκη ορόφου με μεταλλικό σκελετό και σύμμικτη πλάκα στη στέγη, ακολουθώντας την ίδια αρχιτεκτονική δομή του υφιστάμενου κτιρίου. Χρησιμοποιήθηκαν διατομές υποστυλωμάτων ΗΕΒ300, δοκοί ΙΡΕ220 και διαδοκίδες ΙΡΕ140, χάλυβα S275. Οι συνδέσεις δοκών-υποστυλωμάτων, κύριων-δευτερευουσών δοκών, καθώς και οι βάσεις των υποστυλωμάτων με την υπάρχουσα κατασκευή είναι απλές συνδέσεις τέμνουσας, πλην των πλαισίων παραλαβής ροπής όπου η σύνδεση υποστυλώματος-δοκού θεωρείται πάκτωση. Για τη σύμμικτη πλάκα χρησιμοποιήθηκε χαλυβδόφυλλο SYMDECK 73. Τα φορτία της κατασκευής (μόνιμες και κινητές φορτίσεις) υπολογίστηκαν σύμφωνα με το εύρος επιρροής της κάθε διαδοκίδας και προστέθηκαν στο μοντέλο. Στην δεύτερη περίπτωση η προσθήκη ορόφου έγινε με χρήση σύνθετων υλικών ακολουθώντας την ίδια διαδικασία προσομοίωσης και εύρεσης φορτίων όπως του μοντέλου από μεταλλικό σκελετό. Έγινε χρήση τυποποιημένων διατομών σύμφωνα με τα πρότυπα του ASTΜ International και πιο συγκεκριμένα για τα υποστυλώματα χρησιμοποιήθηκε η διατομή IW960, για τις κύριες δοκού IB960 και για τις διαδοκίδες IB640. Για το δάπεδο της στέγης χρησιμοποιήθηκαν τυποποιημένα πάνελ. Για να προβούμε στην ανάλυση των δύο διαφορετικών μοντέλων έγινε ο υπολογισμός του φάσματος σχεδιασμού της κατασκευής με βάση τον Ευρωκώδικα 8, τη ζώνη σεισμικής επικινδυνότητας, τη κατηγορία εδάφους και σπουδαιότητας του κτιρίου και το συντελεστή συμπεριφοράς, το οποίο λήφθηκε ίδιο και στις δύο περιπτώσεις. Επίσης πραγματοποιήθηκαν τρεις διαφορετικοί συνδυασμοί φορτίσεων με τα αποτελέσματα των οποίων έγινε και ο έλεγχος επάρκειας των διατομών του κάθε μοντέλου. Τέλος, συγκρίθηκαν τα αποτελέσματα των αναλύσεων, οι ιδιομορφές των μοντέλων και τα χαρακτηριστικά που κάνουν ξεχωριστό τόσο το χάλυβα όσο και τα σύνθετα υλικά στη χρήση τους επάνω στις κατασκευές του σήμερα. el
heal.abstract The complicated process of adding stories to existing buildings has been extensively researched and developed in recent years. Many researchers in the past years have conducted simulation analyzes to improve understanding of the process of adding stories to existing structures, but computational simulation without experimental data or real-life information is not a reliable method. The most common current methods for adding floors use either reinforced concrete bars, steel or more recently composite materials. These methods are largely successful, but important problems arise in determining the effects of the added story on the carrying capacity of the entire construction. When using reinforced concrete, the integrity of the resulting addition is favorable, but the significant increase in weight impairs the static adequacy of the structure. Rigid rods can be planted to ensure the complete anchorage required, but this usually causes damage to the original steel as well as to the concrete structure due to the drilling process. These weakened joints are likely to reduce the seismic performance of the overall structure. The addition of a story with a steel or composite application is two other methods of converting existing buildings, which have the distinct advantages of short installation time, high degree of industrialization, convenient maintenance and economic efficiency. The connection of the existing building with the added part is an essential element of the structural design, as it ensures the efficiency of the cargo transport and improves the overall static capacity of the building. Although the relative displacement angle increases as the height of the structure increases, the static adequacy of the existing building is an important prerequisite, assumed in our study, to take such interventions. This diploma thesis aims at the study of the addition of one story with two different construction proposals in an existing two-storied reinforced concrete building. The first solution examines the addition of a floor with metal construction, while the second one is the addition of a story of composite materials. SIMULATION OF THE EXISTING BUILDING-BUILDING DESCRIPTION The building is located in Galatsi of Athens and was built in 1958 according to the 1954 Armored Concrete Regulation. It is a two-story building, the ground floor of which consists of two apartments and the first floor of a single-floor apartment. According to the initial study of the building, the quality of the concrete is B300. In correspondence with the new materials we have obtained C25 / 30 quality concrete. The steel used in the manufacture is S275 grade. The simulation of the beams has been done with rectangular cross-sections (basement roof), and with flat-faced sections (ground floor) in which the co-operating width of each beam is defined. Because the specific weight of the beams has been included in the loads carried by the slabs, the material for beams is defined in the program, with a unit weight value equal to 0 being set. Rectangular cross-section is introduced for the posts and their simulation is done with vertically linear elements passing through the center of gravity of each pole. To take into account the same weight of the column, a material having a unit weight of 25 (a specific gravity of 25KN / m3) is defined in the program. EAK 2000 (§ 3.2.3) stipulates that the stiffness of the data will be obtained by assuming a Stage II assuming that the tensile zone of the concrete has been cracked. Thus, for stiffeners the stiffness is equal to 1/2 of this stage I (geometric cross-sectional stiffness), for the columns the static bending stiffness is taken equal to the stiffness of the element I, while for the walls equal to 2/3 of the stiffness of the Stage I. The torsional stiffness of all elements is taken equal to 1/10 of the corresponding Stage I. The material for all cross sections is concrete with a modulus of modulus of 3.1 • 107 kN / m2 and the Poisson ratio v = 0,2. With regard to the support conditions, the base of the posts and the walls is joint. Also, for each floor is defined a diaphragm operation around the Z axis. The joints connecting each slab are placed in the respective diaphragm. This assures the view of three common free movement of the nodes of the floor imposed by the slab. Here is the graphic representation of the vector as it was introduced to the program. The total mass of each floor is considered to be concentrated at the geometric center of gravity of each diaphragm due to the assumption of diaphragmatic plate functioning. The mass of each floor includes the mass of the slabs (with the coating) and the beams as well as the masonry located on the floor. These are the mass of the underlying and overlying columns up to the middle of their height and the mass corresponding to 30% of the payload. THE ADDITION WITH STEEL AND COMPOSITE MATERIALS Concrete used in composite slabs is a category C25 / 30. Structural steel is the basic material from which the structure of the steelworks is composed, for example the building under construction. For its members (composite beams, columns), S275 was used. For the composite slabs SYDDECK 73 steel sheets of ELASTRON were used. The steel of these sheets is of high quality S320. The skeleton of the building consists of metallic columns, composite beams and composite slabs. It was shaped in such a way that the metal columns are mounted on the reinforced concrete columns. The dimensioning of metal parts and the solution of frames were made with the static SAP 2000 program in which members and their loads were simulated. Seismic parameters were taken the same as those presented in the previous chapter, as no breakdown of the metallic part was made, but the seismic behavior of the whole building was analyzed as a single one. The static system of metal inserts is frames with diagonal stiffeners but the program works with the static system of the main material (concrete). All beam-to-column, main-sub-beam joints, as well as the base of the columns with the ground are simple joints except for the torque receiving frames where the column-beam connection is considered to be anchoring. In the above contexts the seats of the columns in the direction in which the frame is operating are formed as crimps, while in the other direction as joints. The cross section of the columns is of the double tau shape and their orientation is such that a uniform distribution of stiffness is achieved in both directions. However, in positions where torque frames exist, the columns are positioned in such a way that their strong shaft is operating in the direction of the frame. Main beams are positioned in both directions and their cross-section is in the form of double tau. In the y direction, secondary twin-tiered beams have been placed. The composite slabs of the building consist of steel sheet and injected concrete, with the steel sheet ribs being arranged parallel to the X direction. As a stiffness system, torque pickup frames were placed in both directions in as symmetric positions as possible. Floor with metal frame and composite slab: Columns: HEB 300 Beams: IPE220 Intersections: IPE140 The simulation of the skeleton of composite materials was carried out using the specifications used for the composite skeleton. The skeleton of the building consists of the following complex cross sections Columns: IW960 Beams: IB960 Intersections: IB640 CONCLUTIONS Eighteen independent modes were calculated, of which, when adding a composite floor skeleton, the sixteen first activate 90% of the building mass. Particular interest is the fact that the same percentage of the building mass in the case of the design of the added floor of composite materials is activated by the first five modes. The fact is justified considering the slight deformation of the composite materials in relation to steel and bearing in mind that the ductility of a carrier reduces its seismic response. Generally against design, this reduction is taken into account in the design spectrum for elastic analysis, according to the behavior factor q. In our case, we have chosen, at the solution, a coefficient of behavior q equal to 1.7 in both design cases, because as mentioned, it is an existing building (Table S4.4. ΚΑΝΕΠΕ). However, in constructions made of composite materials, the choice of the coefficient of behavior q can not be made taking into account the same criteria as those of steel or reinforced concrete structures, since their mechanical behavior varies greatly from them. Therefore, their use in construction requires special attention, caution and meticulous confirmation of their mechanical characteristics. When a height is to be added to an existing reinforced concrete building, both the choice of steel as a construction material and the composite materials have considerable advantages over conventional reinforcing concrete additions. The two design methods studied provide the option of adding height to existing "stressed" buildings, while at the same time reducing the foundation requirements, which also corresponds to an economic benefit. In addition, the completion time of a project is noticeably reduced, resulting in less cost for the project. This is because of the easy and automated production of steel and composite materials and the simple process of erecting skeletons. These constructions provide quality assurance, because the beams and columns that make up the construction are standard industrial sections of high standards, without any deviations from each other, as opposed to the members of a conventional construction made on the construction site. However, to date, composites have not been widely applied in construction. This is primarily due to their high cost, which is often an inhibiting factor in their use. Even cheaper composite materials made of glass fibers have a high cost of application because they require larger quantities of material due to their low modulus of elasticity. At the same time, the excellent elastoplastic strength of steel combined with its low cost, are elements that slow down the erection of modern structures made of composite materials. Finally, the lack of clear specifications and standards for their implementation, as well as a necessary code for design, make it difficult to use them. Nevertheless, their implementation in the context of building reinforcement has impressive results. en
heal.advisorName Αβραάμ, Τάσος el
heal.committeeMemberName Βαμβάτσικος, Δημήτριος el
heal.committeeMemberName Θανόπουλος, Παύλος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 123 σ. el
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα