dc.contributor.author |
Ιμπραημάκης, Μάριος
|
el |
dc.contributor.author |
Impraimakis, Marios
|
en |
dc.date.accessioned |
2018-05-03T10:27:07Z |
|
dc.date.available |
2018-05-03T10:27:07Z |
|
dc.date.issued |
2018-05-03 |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/46922 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.8172 |
|
dc.description |
Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Δομοστατικός Σχεδιασμός και Ανάλυση των Κατασκευών” |
el |
dc.rights |
Default License |
|
dc.subject |
Bayesian Update |
en |
dc.subject |
Subset Simulation |
en |
dc.subject |
Multiscale Modeling |
en |
dc.subject |
Hierarchical Strategy |
en |
dc.subject |
Nanocomposites |
en |
dc.subject |
Μπεϋζιανή Ενημέρωση |
el |
dc.subject |
Μέθοδος Υποσυνόλων |
el |
dc.subject |
Ανάλυση πολλαπλών κλιμάκων |
el |
dc.subject |
Ιεραρχική Μοντελοποίηση |
el |
dc.subject |
Νανοσύνθετα Υλικά |
el |
dc.title |
Stochastic Multiscale Analysis; Bayesian Multiscale Update |
en |
heal.type |
masterThesis |
|
heal.classification |
Computational Stochastic Mechanics |
en |
heal.language |
en |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2018-03-07 |
|
heal.abstract |
Bayesian updating is a powerful method to learn and calibrate models with data and observations, facts that is of utmost importance in multiscale problems with uncertain microscale status like very random and hard predicted nanocomposite behavior. In this work BUS (Bayesian Updating with Structural reliability methods) with SuS (Subset Simulation) in a multiscale environment is employed to compute the posterior distribution of microscale random parameters in a framework that microscale with mesoscale and microscale with macroscale pair models converge into each experimental data simultaneously. More specific, every sample cluster of every subset within SuS in this parallel double Bayesian problem is forced to agree with the other one. In the end, the samples in the final subset (posterior samples in Bayesian terms) have the best agreement with experimental data. This methodology is very promising for nanomaterial reinforced composites which have big uncertainty range with quite unexpected measurements and really large number of parameters. It is a gainful direction for engineering practice and non-costly experimental investigations, being concurrently quite appropriate for every multiscale modeling application. |
en |
heal.sponsor |
Supported by the Bodossaki Foundation |
en |
heal.advisorName |
Παπαδόπουλος, Βησσαρίων |
el |
heal.committeeMemberName |
Κουμούσης, Βλάσης |
el |
heal.committeeMemberName |
Φραγκιαδάκης, Μιχαήλ |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Πολιτικών Μηχανικών |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
61 σ. |
el |
heal.fullTextAvailability |
true |
|