HEAL DSpace

Stochastic Multiscale Analysis; Bayesian Multiscale Update

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ιμπραημάκης, Μάριος el
dc.contributor.author Impraimakis, Marios en
dc.date.accessioned 2018-05-03T10:27:07Z
dc.date.available 2018-05-03T10:27:07Z
dc.date.issued 2018-05-03
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/46922
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.8172
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Δομοστατικός Σχεδιασμός και Ανάλυση των Κατασκευών” el
dc.rights Default License
dc.subject Bayesian Update en
dc.subject Subset Simulation en
dc.subject Multiscale Modeling en
dc.subject Hierarchical Strategy en
dc.subject Nanocomposites en
dc.subject Μπεϋζιανή Ενημέρωση el
dc.subject Μέθοδος Υποσυνόλων el
dc.subject Ανάλυση πολλαπλών κλιμάκων el
dc.subject Ιεραρχική Μοντελοποίηση el
dc.subject Νανοσύνθετα Υλικά el
dc.title Stochastic Multiscale Analysis; Bayesian Multiscale Update en
heal.type masterThesis
heal.classification Computational Stochastic Mechanics en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2018-03-07
heal.abstract Bayesian updating is a powerful method to learn and calibrate models with data and observations, facts that is of utmost importance in multiscale problems with uncertain microscale status like very random and hard predicted nanocomposite behavior. In this work BUS (Bayesian Updating with Structural reliability methods) with SuS (Subset Simulation) in a multiscale environment is employed to compute the posterior distribution of microscale random parameters in a framework that microscale with mesoscale and microscale with macroscale pair models converge into each experimental data simultaneously. More specific, every sample cluster of every subset within SuS in this parallel double Bayesian problem is forced to agree with the other one. In the end, the samples in the final subset (posterior samples in Bayesian terms) have the best agreement with experimental data. This methodology is very promising for nanomaterial reinforced composites which have big uncertainty range with quite unexpected measurements and really large number of parameters. It is a gainful direction for engineering practice and non-costly experimental investigations, being concurrently quite appropriate for every multiscale modeling application. en
heal.sponsor Supported by the Bodossaki Foundation en
heal.advisorName Παπαδόπουλος, Βησσαρίων el
heal.committeeMemberName Κουμούσης, Βλάσης el
heal.committeeMemberName Φραγκιαδάκης, Μιχαήλ el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Πολιτικών Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 61 σ. el
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής