dc.contributor.author | Αρώνη, Ευγενία-Νεκταρία![]() |
el |
dc.contributor.author | Aroni, Evgenia-Nektaria![]() |
en |
dc.date.accessioned | 2018-07-16T11:57:23Z | |
dc.date.available | 2018-07-16T11:57:23Z | |
dc.date.issued | 2018-07-16 | |
dc.identifier.uri | http://dspace.lib.ntua.gr/xmlui/handle/123456789/47319 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.15115 | |
dc.rights | Default License | |
dc.subject | Κτήρια | el |
dc.subject | Εντοπισμός | el |
dc.subject | Φωτογραμμετρία | el |
dc.subject | Πυκνή συνταύτιση | el |
dc.subject | Νέφος σημείων | el |
dc.subject | Point cloud | en |
dc.subject | Photogrammetry | el |
dc.subject | Computer vision | el |
dc.subject | Building | el |
dc.subject | Detection | el |
dc.title | Αυτόματος εντοπισμός κτηρίων με φωτογραμμετρικές μεθόδους σε πυκνή αστική περιοχή | el |
heal.type | bachelorThesis | |
heal.classification | Φωτογραμμετρία | el |
heal.language | el | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2018-03-26 | |
heal.abstract | Στην παρούσα εργασία πραγματοποιήθηκε αυτόματος εντοπισμός όλων των κτηρίων του κέντρου της Αθήνας. Τα δεδομένα που χρησιμοποιήθηκαν ήταν οκτώ γεωαναφερμένες αεροφωτογραφίες με τέσσερα κανάλια (έγχρωμο και εγγύς υπέρυθρο). Στο πρώτο στάδιο δημιουργήθηκε ένα νέφος σημείων με τη χρήση του Semi-global algorithm (πυκνή συνταύτιση). Στη συνέχεια, με ανάπτυξη εφαρμογών σε Matlab δημιουργήθηκε ένα μοντέλο εδάφους, και εντοπίστηκαν τα κτήρια και η βλάστηση. Στο τελικό στάδιο για κάθε κτήριο δημιουργήθηκε ένα πολύγωνο, και το σύνολο των πολυγώνων αποθηκεύτηκαν και τροποποιήθηκαν σε περιβάλλον GIS. | el |
heal.abstract | The diploma thesis aims in developing an application that detects buildings in densely populated areas. The study area included the wider center of the city of Athens, starting from Keramikos area to Alexandras Avenue. The data used was eight aerial images of two flight strips, taken from a panchromatic camera. Two stereo models of the area were created, using the Semi global Algorithm (SGM) and the Structure from Motion process. After evaluating both models, the Semi global Algorithm’s model was chosen as more accurate and, therefore, preferable to detect the buildings in. Afterwards, an algorithm was developed using Matlab, with the application of which all partial clouds (from stereo pairs) were corrected and merged into one. In the second stage of the algorithm, a DTM was created for the study area, and, following, all complexes of the buildings were isolated, using remote-sensing methods. Within the complexes, each building was individually detected also by applying an algorithm developed in Matlab. For each building, a polygon describing their floor plan was recorded in GIS. In addition, the polygon had information about the number of level each building consists of. During the third part of the algorithm, all polygons were processed into Geographical Information Systems, in order to correct their geometry and discard outliers. The results were evaluated by comparing the results to the polygons available on openstreetmap.org. openstreetmap.org were updated on their third dimension, since this information was not available online. Finally, some of the polygons in openstreetmap.org were updated on their third dimension, since this information was not available online. | en |
heal.advisorName | Ιωαννίδης, Χαράλαμπος | el |
heal.committeeMemberName | Πότσιου, Χρυσή | el |
heal.committeeMemberName | Δουλάμης, Αναστάσιος | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Αγρονόμων και Τοπογράφων Μηχανικών. Τομέας Τοπογραφίας. Εργαστήριο Φωτογραμμετρίας | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 151 σ. | el |
heal.fullTextAvailability | true |