dc.contributor.author | Konstantinidis, Stavros | en |
dc.contributor.author | Κωνσταντινίδης, Σταύρος | el |
dc.date.accessioned | 2018-08-28T07:49:42Z | |
dc.date.issued | 2018-08-28 | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/47452 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.15681 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Selective catalytic reduction | en |
dc.subject | SCR thermal model | en |
dc.subject | Engine model | en |
dc.subject | Marine diesel engine | en |
dc.subject | High-pressure SCR | en |
dc.subject | Επιλεκτική καταλυτική αναγωγή | el |
dc.subject | Μοντέλο προσομοίωσης κινητήρων | el |
dc.subject | Θερμικό μοντέλο επιλεκτικής καταλυτικής αναγωγής | el |
dc.subject | Υψηλής πίεσης SCR | el |
dc.subject | Προσομοιώσεις μεταβατικού φορτίου | el |
dc.title | Development of SCR thermal model and performance of transient simulations with an engine simulation code | en |
heal.type | bachelorThesis | |
heal.classification | Marine engineering | en |
heal.dateAvailable | 2019-08-27T21:00:00Z | |
heal.language | el | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2018-06 | |
heal.abstract | The present Thesis focuses on the development of an SCR thermal model that can accurately predict the temperature dynamics of an SCR system installed on a marine diesel engine. Steady and transient simulations for a two-stroke marine diesel engine equipped with an SCR system are performed in order to investigate the effect of the installed valves on the engine operation. Legislation concerning pollutants and in particular nitrogen oxides (NOx) abatement is briefly presented in Chapter 1, emphasizing on the latest IMO Tier III regulations and the changes they introduce. The objective and the outline of the Thesis are also presented. In order to reduce high NOx concentration in the exhaust gases and comply with the latest strict limits, there are two proven technologies. The first one is the EGR (Exhaust Gas Recirculation) technology and the other is the SCR (Selective Catalytic Reduction) technology. Despite the fact that both of them are already established technologies for power plants and truck engines, many challenges arise from their applications in large two-stroke marine diesel engines. In Chapter 2, a brief description of the basic principles of EGR is followed by a thorough description of SCR working principles. SCR can be placed downstream or upstream the turbine depending on the application, with each placement having its own advantages. Concerning marine diesel engines, SCR placement upstream the turbine is mandatory. In order to study the thermal response of a marine SCR aftertreatment system in transient loading of a two-stroke marine diesel engine, an SCR model is developed and validated using measurements from a full scale engine-SCR testbed. It is assumed that SCR consists of three parts: vaporizer, intermediate pipe and reactor. The equations that approach the aforementioned modeling are partial differential equations (pde), which are solved in time using two methods: an explicit and an implicit method. Each one has its own advantages and disadvantages. The output of the model is the SCR outlet temperature. The above mentioned models were validated using testbed measured data from a large two-stroke marine diesel engine. The validation process included tests both in steady and transient engine loads. Validation was followed by the connection of the SCR model to an existing engine simulation code (MOTHER) and the performance of steady and transient simulations. The effect of the onboard valves on the operation of the engine was investigated. | en |
heal.advisorName | Κυρτάτος, Νικόλαος | el |
heal.committeeMemberName | Καϊκτσής, Λάμπρος | el |
heal.committeeMemberName | Παπαλάμπρου, Γεώργιος | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Ναυτικής Μηχανολογίας. Εργαστήριο Ναυτικής Μηχανολογίας | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 90 σ. | el |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: