dc.contributor.author |
Δημακόπουλος, Δημοσθένης
|
el |
dc.contributor.author |
Dimakopoulos, Dimosthenis
|
en |
dc.date.accessioned |
2018-09-18T09:42:05Z |
|
dc.date.available |
2018-09-18T09:42:05Z |
|
dc.date.issued |
2018-09-18 |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/47616 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.13875 |
|
dc.rights |
Default License |
|
dc.subject |
Ηλεκτροεγκεφαλογράφημα |
el |
dc.subject |
Τηλεχειρισμός ρομπότ |
el |
dc.subject |
Επεξεργασία σήματος |
el |
dc.subject |
Αρπαγή |
el |
dc.subject |
Διεπαφές ανθρώπου-μηχανής |
el |
dc.subject |
Electroencephalogram |
en |
dc.subject |
Brain-machine interfaces |
en |
dc.subject |
Teleoperation |
en |
dc.subject |
Grasping |
en |
dc.subject |
Signal processing |
en |
dc.title |
Ανάλυση σήματος ηλεκτροεγκεφαλογραφήματος κατά τη διάρκεια χειρονομίας αρπαγής για χρήση σε τηλεχειρισμό |
el |
heal.type |
bachelorThesis |
|
heal.secondaryTitle |
Analysis of electroencephalographic signals during grasping gesture for use in teleoperation |
en |
heal.classification |
Επεξεργασία σήματος |
el |
heal.classification |
Ρομποτική |
el |
heal.classificationURI |
http://data.seab.gr/concepts/d4a2bbb7e49dc1c3b397d27e9041df8118db670b |
|
heal.classificationURI |
http://data.seab.gr/concepts/989f7eb5ce955dbf96b4eebf1ff0aaec33f7e858 |
|
heal.language |
el |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2018-07 |
|
heal.abstract |
Μελέτη και επεξεργασία Ηλεκτροεγκεφαλογραφικών σημάτων μέσω πειραματικής διεξαγωγής, με σκοπό την ταξινόμηση δύο καταστάσεων του χρήστη, της Χαλάρωσης και της Χειρονομίας Αρπαγής. Η ταξινόμηση των καταστάσεων αυτών έχει ως σκοπό την κατασκευή κατάλληλης Διεπαφής Εγκεφάλου-Υπολογιστή, για τον τηλεχειρισμό ρομπότ με προσθετικό χέρι για την αρπαγή αντικειμένων. |
el |
heal.abstract |
The evolution of technology and the society we are part of and live has led to remarkable scientific steps to understand the human brain. Through the processing of electroencephalographic ( EEG ) signals we are now able to decode movements and patterns of a human body in order to build Brain-machine Interfaces capable of improving our way of life. EEG signals may be weak and contain a lot of noise but hide all the information we need to decode movements such as the gesture during the grasping of objects and succeed in the teleoperation of a robot with the noninvasive connection of the user with electrodes along the scalp. By researching the alpha and beta rhythms of the brain during resting and grasping phases and the Event-Related Desynchronization or Synchronization we can reach a satisfying classification of a user’s intent or condition. In this diploma thesis, we researched and processed the EEG signals recorded during an experimental set up where we succeeded in the classification of two phases of a user: the Resting Phase and the Grasping phases/conditions Interface for the teleoperation of robots with prosthetic hands for grasping objects. The experiments were designed with the thought of future applications in Virtual Reality environments where the user will be connected in such a virtual environment and control a robotic system with EEG signals only in order to grasp objects. phases/conditions Interface for the teleoperation of robots with prosthetic hands for grasping objects. The experiments were designed with the thought of future applications in Virtual Reality environments where the user will be connected in such a virtual environment and control a robotic system with EEG signals only in order to grasp objects. Phase. The satisfying classification of these two phases/conditions enables us to build a suitable Brain-machine Interface for the teleoperation of robots with prosthetic hands for grasping objects. The experiments were designed with the thought of future applications in Virtual Reality environments where the user will be connected in such a virtual environment and control a robotic system with EEG signals only in order to grasp objects. |
en |
heal.advisorName |
Κυριακόπουλος, Κωνσταντίνος |
el |
heal.committeeMemberName |
Παπαδόπουλος, Ευάγγελος |
el |
heal.committeeMemberName |
Αντωνιάδης, Ιωάννης |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Μηχανολόγων Μηχανικών. Τομέας Μηχανολογικών Κατασκευών και Αυτομάτου Ελέγχου |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
77 σ. |
el |
heal.fullTextAvailability |
true |
|