dc.contributor.author | Chatzipantazis, Evangelos | en |
dc.contributor.author | Χατζηπανταζής, Ευάγγελος | el |
dc.date.accessioned | 2018-11-16T09:10:18Z | |
dc.date.available | 2018-11-16T09:10:18Z | |
dc.date.issued | 2018-11-16 | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/48018 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.15422 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Spectral | en |
dc.subject | Φασματική | el |
dc.subject | Semisupervised | en |
dc.subject | Mustlink | en |
dc.subject | Cannotlink | en |
dc.subject | Graphcut | en |
dc.subject | Ημιεπιβλεπόμενη | el |
dc.subject | Σύζευξη | el |
dc.subject | Αποσύζευξη | el |
dc.subject | Γραφοτομή | el |
dc.title | Σημασιολογική κατάτμηση αντικειμένων με τεχνικές φασματικής θεωρίας γράφων | el |
dc.title | Semantic image segmentation using spectral graph-theoretic techniques | en |
heal.type | bachelorThesis | |
heal.classification | Αντίληψη και όραση υπολογιστών | en |
heal.classification | Perception and computer vision | en |
heal.classificationURI | http://data.seab.gr/concepts/12c1c913dbe758d67c4c509a6768bdbc7905830c | |
heal.classificationURI | http://data.seab.gr/concepts/12c1c913dbe758d67c4c509a6768bdbc7905830c | |
heal.language | el | |
heal.language | en | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2018-10-11 | |
heal.abstract | Methods on data segmentation on graphs have in recent years shown an increase in interest due to their effectiveness in a variety of applications and a successful representation of the structure of the data and their relational properties. Particularly in the area of Computer Vision, the process of creating graphs from images has begun to solve many unsupervised learning problems with which classical methods have struck. One such example of data partitioning algorithms in the structure of a graph is the spectral graph clustering family that discovers the global properties of a graph and the underlying compact structure of the clusters that compose it by analyzing its spectrum. Through the association of image segmentation with data clustering and perceptual grouping and with intuition inspired by the laws of Gestalt in psychology, we apply an automated hierarchical method to transform image representation from the pixel-wise representation into a graph representation. We then formalize rigorously the spectral segmentation algorithms, analyze and solve the optimization problem formed by the Normalized Cuts and argue for its correctness by associating it simultaneously with other well-thought-out segmentation techniques. Finally, we open the "black box" of the spectral graph clustering algorithms, which are currently a non-supervised method, with the addition of extraneous information and we theoretically establish a framework for the effective introduction of external constraints | en |
heal.advisorName | Maragos, Petros | en |
heal.committeeMemberName | Ψυλλάκης, Χαράλαμπος | el |
heal.committeeMemberName | Maragos, Petros | en |
heal.committeeMemberName | Ποταμιάνος, Γεράσιμος | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Σημάτων, Ελέγχου και Ρομποτικής | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 135 σ. | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: