dc.contributor.author | Σέντερης, Αλέξανδρος | el |
dc.contributor.author | Senteris, Alexandros | en |
dc.date.accessioned | 2019-03-14T09:07:42Z | |
dc.date.available | 2019-03-14T09:07:42Z | |
dc.date.issued | 2019-03-14 | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/48435 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.16315 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Τεχνητά νευρωνικά δίκτυα | el |
dc.subject | Μοντελοποίηση | el |
dc.subject | Modeling | en |
dc.subject | Artificial neural networks | en |
dc.subject | Performance | en |
dc.subject | Απόδοση | el |
dc.subject | Εργαλείο ανάλυσης | el |
dc.subject | Analysis tool | en |
dc.title | Development of a method to estimate the propulsion power of a VLCC Tanker based on operational data | en |
dc.title | Ανάπτυξη μεθόδου για την εκτίμηση ισχύος πρόωσης δεξαμενοπλοίου τύπου VLCC με χρήση πραγματικών δεδομένων λειτουργίας | el |
heal.type | bachelorThesis | |
heal.classification | Ναυπηγική | el |
heal.language | en | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2018-10-24 | |
heal.abstract | Ανάπτυξη μεθόδου για την εκτίμηση ισχύος πρόωσης δεξαμενοπλοίου τύπου VLCC με χρήση πραγματικών δεδομένων λειτουργίας | el |
heal.abstract | The purpose of this thesis is to develop a real-time vessel performance analysis system to evaluate the condition of ships with respect to their clean hull and clean propeller condition. During operation, the vessel will experience an increase of resistance due to several factors, linked to the sailing conditions. Added wave resistance, wind resistance, shallow water effect and trim are examples of parameters, which affect the power (energy) needed to propel the vessel. Any increase in resistance will result to the increase of fuel consumption and thus the increase of harmful emissions to the environment. A robust monitoring and analysis system can be used as a supporting tool to decisions related to actions aiming to improve performance. The performance evaluation is based on a vessel-specific model which takes into account operational and weather condition, trying to assess and estimate power needed to overcome all resistance components, while assuming a clean hull and propeller. The current thesis is based on the analysis of data, logged through the automated data transmission system of sensors’ onboard a 319,000 tdw VLCC managed by Maran Tankers Management Inc. Through mapping of these parameters to the output target (the shaft power measured by a torque meter) the model is generated. The goal of the developed system is to investigate the potential use of Artificial Neural Networks (ANNs) in estimating the power needed to propel the vessel in any given operational, environmental and loading condition, assuming a clean hull and clean propeller condition. Multi-layer perceptron (MLP) networks, were selected to model the vessel’s behaviour. The increasing amount of data transmitted to shore is creating the opportunity to develop systems based on information that until recently was not available. ANNs and in particular, MLPs, are an effective way to process this information. The results indicate that such an approach could be successfully applied, giving the potential to approximate complex non-linear regression problems, based on a reliable set of measured data. | en |
heal.advisorName | Ζαραφωνίτης, Γεώργιος | el |
heal.committeeMemberName | Τζαμπίρας, Γεώργιος | el |
heal.committeeMemberName | Σπύρου, Κωνσταντίνος | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Μελέτης Πλοίου και Θαλάσσιων Μεταφορών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 92 σ. | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: