dc.contributor.author |
Τσόπελας, Ηλίας-Ιωάννης
|
el |
dc.contributor.author |
Tsopelas, Ilias-Ioannis
|
en |
dc.date.accessioned |
2019-03-18T10:46:38Z |
|
dc.date.available |
2019-03-18T10:46:38Z |
|
dc.date.issued |
2019-03-18 |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/48465 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.16467 |
|
dc.rights |
Default License |
|
dc.subject |
Στροβιλομηχανές |
el |
dc.subject |
Επιλύτης ροής |
el |
dc.subject |
Κάρτες γραφικών |
el |
dc.subject |
Βελτιστοποίηση |
el |
dc.subject |
Πιστοποίηση |
el |
dc.subject |
Turbomachinery |
el |
dc.subject |
CFD solver |
el |
dc.subject |
GPU |
el |
dc.subject |
Optimization |
el |
dc.subject |
Validation |
el |
dc.title |
Ένταξη του GPU επιλύτη ροής PUMA σε ολοκληρωμένο εργαλείο ανάλυσης και βελτιστοποίησης στροβιλομηχανών της βιομηχανίας. Δοκιμές και πιστοποίση |
el |
dc.title |
Integration of the GPU-Enabled CFD solver PUMA into the workflow of a turbomachinery industry. Testing and validation |
en |
heal.type |
bachelorThesis |
|
heal.classification |
Στροβιλομηχανές |
el |
heal.classificationURI |
http://data.seab.gr/concepts/c767e3491768ec9502f702c4072d13744286a45d |
|
heal.language |
el |
|
heal.language |
en |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2018-10-10 |
|
heal.abstract |
This diploma thesis presents the integration and validation of the PUMA CFD solver developed by the Parallel CFD \& Optimization Unit (PCOpt/NTUA) of the School of Mechanical Engineering of the National Technical University of Athens into the industrial workflow of Andritz Hydro, at the premises of which a major part of this thesis was conducted.
The PUMA CFD solver can run on clusters of GPUs, thus achieving lower computational costs. PUMA uses a vertex-centered finite volume method for solving the 3D Reynolds-Averaged Navier-Stokes equations with the use of the Spalart-Allmaras turbulence model. PUMA, also, employs the pseudocompressibility method to accelerate the convergence rate.
Various interfacing tools are programmed that enable the organic integration of the PUMA solver into the workflow. These tools include two grid converters, a pre-processor and a post-processor.
The PUMA solver is, then, compared with a commercial CFD solver. The comparison is based on various cases of hydraulic turbine configurations. With each new case the complexity of the configuration rises, thus testing the capabilities of the PUMA solver. The cases include the runner of a Francis turbine, the guide vanes and the runner of a propeller turbine and the guide vanes, the runner and the draft tube of a Kaplan turbine.
Finally, the PUMA solver is used as an evaluation tool in the framework of the design-optimization loop used by Andritz Hydro. The Evolutionary Algorithm optimization method is chosen, employed by the tool Evolutionary Algorithm SYstem (EASY), developed by PCOpt/NTUA. The shape of the blade of a Kaplan runner iss optimized with the goal of maximizing the turbine's efficiency and avoiding the appearance of cavitation. |
en |
heal.advisorName |
Γιαννάκογλου, Κυριάκος |
el |
heal.committeeMemberName |
Μαθιουδάκης, Κωνσταντίνος |
el |
heal.committeeMemberName |
Αρετάκης, Νικόλαος |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Μηχανολόγων Μηχανικών. Τομέας Ρευστών. Εργαστήριο Θερμικών Στροβιλομηχανών |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
126 σ. |
|
heal.fullTextAvailability |
true |
|