HEAL DSpace

H Χρονικά Μη-Μόνιμη Διακριτή Συζυγής Μέθοδος με Διατύπωση στο Πεδίο του Χρόνου για τη Βελτιστοποίηση Μορφής στις Στροβιλομηχανές

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ντανάκας, Γεώργιος el
dc.contributor.author Ntanakas, Georgios en
dc.date.accessioned 2019-04-08T09:16:29Z
dc.date.available 2019-04-08T09:16:29Z
dc.date.issued 2019-04-08
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/48580
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.3081
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Διακριτή Συζυγής Μέθοδος el
dc.subject Αεροδυναμική Βελτιστοποίηση Σχήματος el
dc.subject Στροβιλομηχανές el
dc.subject Υπολογιστική Ρευστοδυναμική el
dc.subject Μη-Μόνιμες Ροές el
dc.subject Computational Fluid Dynamic en
dc.subject Unsteady Discrete Adjoint Method en
dc.subject Sensitivity Derivatives en
dc.subject Shape Optimization en
dc.subject Multi-row Turbomachinery en
dc.title H Χρονικά Μη-Μόνιμη Διακριτή Συζυγής Μέθοδος με Διατύπωση στο Πεδίο του Χρόνου για τη Βελτιστοποίηση Μορφής στις Στροβιλομηχανές el
dc.title Unsteady Discrete Adjoint Method Formulated in the Time-Domain for Shape Optimization in Turbomachinery en
dc.contributor.department Τομέας Στροβιλομηχανών el
heal.type doctoralThesis
heal.generalDescription Αγγλικό Κείμενο + Εκτενής Ελληνική Περίληψη el
heal.classification Υπολογιστική Ρευστοδυναμική el
heal.classification Computational Fluid Dynamics en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2018-12-21
heal.abstract This PhD thesis deals with the mathematical formulation, solution, programming and validation of the unsteady discrete adjoint method, formulated in the time-domain, for the computation of first-order sensitivity derivatives for objective functions related to the aerodynamics of turbomachinery and their utilization in optimization algorithms. The cases that are tackled involve the constrained optimization of industrial, 3D, multirow, turbomachinery configurations with transient and periodic flows. The unsteady adjoint equations are formulated for an objective function in the form of a time-integral over a selected time-interval. The dual time-stepping technique is used to solve the unsteady adjoint equations along with an iterative scheme, which is the adjoint to the 5-stage Runge-Kutta scheme used for the flow equations and which is derived "by-hand". The scheme is formulated so as to ensure same convergence rate as the Unsteady Reynolds-Averaged Navier-Stokes (URANS) solver. Algorithmic Differentiation (AD) is employed in the adjoint solver for the computation of selected differential terms. Its usage is restricted to low level operations and combined with hand-differentiation to ensure efficiency. To enable communication between adjacent row-domains in the adjoint solver, the adjoint sliding interface is developed to replace the mixing interface technique used in steady state solvers. Its baseline is the sliding interface of the flow solver where grids of adjacent rows are generated so that there is a one-cell overlap. AD along with hand programming ensure that the implementation is consistent with the reverse flow of information in the adjoint solver. The solver utilizes the SSD disk space instead of RAM to store and read-in, in a parallel manner, the per-time-step flow fields during the adjoint execution. Thus, RAM bottlenecks are avoided while run time is not significantly increased. The temporal coarsening technique is employed in the adjoint solver to decrease the run time and the required storage space when this exceeds the available storage capacity. Adjoint-based derivatives are computed and used within the optimization workflow. If equality constraints are considered, the component of the objective function’s gradient which is normal to the constraints’ gradients is used along with the projected gradient descent method to update the design variables and, thus, the geometry. In unconstrained optimization problems, steepest descent is used. The developed software is applied to the shape optimization of 3D, multi-row, turbomachinery cases for the first time in the literature. The application cases include one single row turbine case (transient operation), one stage turbine case (periodic flow study) and one 3-row compressor case (periodic flow study). The computed derivatives are validated against the derivatives computed via finite differences and, then, used in optimization setups with and without equality constraints. en
heal.sponsor AboutFlow ITN, Marie Curie Actions, FP7 en
heal.advisorName Γιαννάκογλου, Κυριάκος el
heal.advisorName Giannakoglou, Kyriakos en
heal.committeeMemberName Αρετάκης, Νικόλαος el
heal.committeeMemberName Βουτσινάς, Σπυρίδων el
heal.committeeMemberName Μαθιουδάκης, Κωνσταντίνος el
heal.committeeMemberName Νικολός, Ιωάννης el
heal.committeeMemberName Καϊκτσής, Λάμπρος el
heal.committeeMemberName Ρουμελιώτης, Ιωάννης el
heal.academicPublisher Σχολή Μηχανολόγων Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 237
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα