dc.contributor.author | Στέλλας, Αντώνιος-Χαράλαμπος | el |
dc.contributor.author | Stellas, Antonios-Charalampos | en |
dc.date.accessioned | 2019-05-13T07:49:14Z | |
dc.date.available | 2019-05-13T07:49:14Z | |
dc.date.issued | 2019-05-13 | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/48685 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.9048 | |
dc.description | Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Μικροσυστήματα και Νανοδιατάξεις” | el |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Νανοτεχνολογία | el |
dc.subject | Μηχανική μάθηση | el |
dc.subject | Τραχύτητα | el |
dc.subject | Νανοεπιφάνειες | el |
dc.subject | Ενεργός επιφάνεια | el |
dc.subject | Nanotechnology | en |
dc.subject | Machine Learning | en |
dc.subject | roughness | en |
dc.subject | Active Area | en |
dc.subject | nanosurfaces | en |
dc.title | Μηχανική μάθηση και Νανοτεχνολογία: Σύνδεση δομικών και λειτουργικών παραμέτρων νανοδομημένων επιφανειών με νανοτραχύτητα | el |
dc.title | Machine learning and Nanotechnology: Connecting the structural and functional parameters of rough nano-surfaces | en |
heal.type | masterThesis | |
heal.classification | Νανοτεχνολογία | el |
heal.classification | Μηχανική Μάθηση | el |
heal.classification | Τεχνητή νοημοσύνη | el |
heal.classification | Nanotechnology | en |
heal.classification | Machine learning | el |
heal.classification | Artificial intelligence | el |
heal.classificationURI | http://skos.um.es/unescothes/C02659 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85079324 | |
heal.classificationURI | http://skos.um.es/unescothes/C00261 | |
heal.language | el | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2018-10-26 | |
heal.abstract | In this diploma thesis, we investigate how artificial intelligence methods can assist the complex process of manufacturing, characterization and the use nanostructured materials. This research is an attempt to reinforce the two-way relationship between nanotechnology and artificial intelligence, where the latter will not only benefit from the first by using nanoelectronics but also enhance its further development by efficient analyzing its nano-data. Specifically, we use methods of machine learning (subfield of artificial intelligence) in order to connect the structural and functional parameters to nanostructured surfaces with roughness. Optimizing this link is crucial for further developments of nanotechnology and, above all, for the transformation of its results into widespread nanoproducts. The main motivation of this study is the stochastic character of surfaces with roughness that leads to a large number of parameters used to describe the roughness of a surface, however it is not clear in many cases their connection with a particular desirable functionality. The use of machine learning for the purpose of our work, for the purpose of diplomacy, would facilitate the prediction of functional parameters by the structural ones. At the same time, it could extract internal attributes from this link by asking questions such as: Can machine learning models demonstrate which structural parameters are of greater importance for this connection? In particular, our study focuses on the parameter of the active area, which affects the functionality in many applications (catalytic behavior, bio-structure, hydrophobicity, reflectivity, etc.), seeking its dependence on structural parameters of height and width roughness (Rms, correlation length, skewness, kurtosis). In the first part of our work we study the dependence of the active area on the structural parameters by means of simulated surfaces with roughness. In the second part we check whether machine learning can be used to make this connection by using model selective simulation results of the first part. From the results of this work we can conclude that models of machine learning based on the method of random forests and deep neural networks with differences between them manage to predict the precision of the active surface through the structural parameters. In addition, in the method of deep neural networks, this precision is maintained on a small number of training surfaces, making the method the most suitable for realistic applications. Finally, almost all methods show us that the Rms is the most critical parameter for predicting the active surface with a second correlation length, a finding that is confirmed and agrees with the simulation methods of the first part of the study. | en |
heal.advisorName | Κωνσταντούδης, Βασίλης | el |
heal.committeeMemberName | Τσουκαλάς, Δημήτριος | el |
heal.committeeMemberName | Παπαδόπουλος, Γεωργιος | el |
heal.committeeMemberName | Κωνσταντούδης, Βασίλης | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 105 σ. | el |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: