HEAL DSpace

Price prediction and forecasting for items in the online game Path of Exile using Machine and Deep Learning methods

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Τζιβάκης, Δημήτριος el
dc.contributor.author Tzivakis, Dimitrios en
dc.date.accessioned 2019-05-16T10:17:12Z
dc.date.available 2019-05-16T10:17:12Z
dc.date.issued 2019-05-16
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/48750
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.16468
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Μηχανική εκμάθηση el
dc.subject Επαναλαμβανόμενα νευρωνικά δίκτυα el
dc.subject Κατηγοριοποίηση en
dc.subject Γραμμική παλινδρόμηση en
dc.subject Πρόβλεψη en
dc.subject Machine learning en
dc.subject Recurrent neural networks en
dc.subject Artificial neural networks en
dc.subject RNN en
dc.subject LSTM en
dc.title Price prediction and forecasting for items in the online game Path of Exile using Machine and Deep Learning methods en
heal.type bachelorThesis
heal.classification Μηχανική εκμάθηση el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2019-03-13
heal.abstract Making the most profit in an online game with the least time investment is perhaps one of the most asked questions new players have. It requires a vast amount of knowledge especially for complex games with in-game economies. Using Path of Exile as our game of choice, we have built a dataset of in-game item transactions using its built-in API and using machine learning we analyse the dataset to find ways to reduce the knowledge needed for new players to generate currency faster and more efficiently through buy and sell transactions. After downloading 6 months‘ worth of data from the API feed, we apply a pipeline in which we read the data, convert it to a readable format using a document based database - since natively the feed schema is highly nested- and use statistics and domain knowledge to engineer features which will later help our machine learning models perform better. We finally produce two datasets:  A dataset comprising of items that present a firm set of attributes through time. We use Recurrent Neural Networks in the form of LSTM to build models to try and forecast the future prices of these items. These models can later be used to help players decide where to buy or sell the items according to our forecast model.A dataset comprising of items that present a variable number of features. We use different machine learning algorithms as well as Artificial Neural Network models to predict the price of an item or classify it in range price clusters meaningful to a player. A player can later use these estimators, to get information on the price of items and decide if an item is valuable and how much. en
heal.advisorName Κοζύρης, Νεκτάριος el
heal.committeeMemberName Κοζύρης, Νεκτάριος el
heal.committeeMemberName Τσουμάκος, Δημήτριος el
heal.committeeMemberName Στάμου, Γεώργιος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 109 σ.
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα