HEAL DSpace

The Moving Least Squares Method in Mesh Deformation - Implementation in CUDA/C++ & Performance analysis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Κατσαβριάς, Ευάγγελος el
dc.contributor.author Katsavrias, Efangelos en
dc.date.accessioned 2019-05-20T08:54:26Z
dc.date.available 2019-05-20T08:54:26Z
dc.date.issued 2019-05-20
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/48784
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.9207
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Υπολογιστική Μηχανική” el
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Παραμόρφωση πλεγμάτων el
dc.subject Κινούμενων ελαχίστων τετραγώνων el
dc.subject Παράλληλος προγραμματισμός el
dc.subject Κάρτες γραφικών el
dc.subject Αλγόριθμοι el
dc.subject Mesh deformation en
dc.subject Moving Least Squares en
dc.subject Parallel programming el
dc.subject GPUs el
dc.subject Algorithms el
dc.title The Moving Least Squares Method in Mesh Deformation - Implementation in CUDA/C++ & Performance analysis en
heal.type masterThesis
heal.classification Υπολογιστική μηχανική el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2019-02-28
heal.abstract There are plenty applications in computational mechanics, e.g. in fluid flows around bodies, contact solid mechanics, fluid-structure interaction analysis, etc., where the mesh deformation is part of the process. These problems are quite computationally intensive and very often solved on GPGPUs. Therefore, a mesh deformation method that would perform well on the GPGPU parallel environment, is something desirable to reduce the overall solution time of the problem. Such a mesh deformation method seems to be the Moving Least Squares (MLS) method, which exhibits full data independence in its coarse granularity level of computations, and a moderate parallelization potential in its finer granularity of computations. Prior work on the MLS method for mesh deformation, see Τουρής[2016], had exposed the effectiveness and the good performance of the method in mesh deformation. In this work, a parallel execution of the Moving Least Squares (MLS) method is developed, on General Purpose GPUs (GPGPUs). Initially, the MLS method’s computations are analyzed to expose the potential parallelism with the CUDA compute execution model. Further, CUDA algorithms are proposed to execute the computations efficiently and gain an optimal speedup. Additionally, the MLS method is enriched with the more general rational weighting functions (i.e. inverse distance weighting functions), which allow the utilization of low polynomial degree MLS interpolation, preserving the good quality results for low-medium degree of mesh deformations, see Witteveen and Bijl[2009]. The low polynomial MLS interpolation is an interesting case, because the computations are substantially reduced and the parallelization potential is increased. The results of the developed algorithms expose good compute performance with very high speedups for low polynomial degree MLS interpolations, e.g. up to x20 in the case of the zero degree MLS method (known also as Inverse distance weighting method). The speedups for higher polynomial degrees are moderate, i.e. x5, but the utilized hardware comprised of a very strong CPU and a GPGPU with poor compute resources. en
heal.advisorName Γιαννάκογλου, Κυριάκος el
heal.committeeMemberName Μπουντουβής, Ανδρέας el
heal.committeeMemberName Γιαννάκογλου, Κυριάκος el
heal.committeeMemberName Κυρανούδης, Χρήστος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Χημικών Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 142 σ. el
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα