dc.contributor.author |
Πέγιου - Μαλακού, Βασιλική - Μαρία
|
el |
dc.contributor.author |
Pegiou - Malakou, Vasiliki - Maria
|
en |
dc.date.accessioned |
2019-12-23T09:41:05Z |
|
dc.date.available |
2019-12-23T09:41:05Z |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/49633 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.17331 |
|
dc.description |
Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Γεωπληροφορική” |
el |
dc.rights |
Default License |
|
dc.subject |
Τηλεπισκόπιση |
en |
dc.subject |
Παρατήρηση της Γής |
el |
dc.subject |
Ραντάρ |
el |
dc.subject |
Μηχανική Μάθηση |
el |
dc.subject |
Εδαφική υγρασία |
el |
dc.subject |
Remote Sensing |
en |
dc.subject |
Earth Observation |
en |
dc.subject |
Radar |
en |
dc.subject |
High Resolution |
en |
dc.subject |
Deep Learning, |
en |
dc.subject |
Soil |
en |
dc.title |
Soil Moisture Estimation based on
Multispectral and SAR Satellite Data using
Google Earth Engine and Machine Learning |
en |
dc.title |
Εκτίμηση Εδαφικής Υγρασίας από Πολυφασματικά και
Ραντάρ Δορυφορικά Δεδομένα με χρήση του Google
Earth Engine και Τεχνικών Μηχανικής Μάθησης |
el |
heal.type |
masterThesis |
|
heal.classification |
ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ |
el |
heal.classification |
ΤΗΛΕΠΙΣΚΟΠΗΣΗ |
el |
heal.classification |
GEO-INFORMATICS |
en |
heal.classification |
Remote sensing |
en |
heal.classificationURI |
http://data.seab.gr/concepts/0470dde7ed974578bbc4961549816f7b254efcb2 |
|
heal.classificationURI |
http://data.seab.gr/concepts/29f3834f510e2fcbee2fcce329a355775dd48e27 |
|
heal.classificationURI |
http://data.seab.gr/concepts/0470dde7ed974578bbc4961549816f7b254efcb2 |
|
heal.classificationURI |
http://skos.um.es/unescothes/C03347 |
|
heal.language |
en |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2018-10-25 |
|
heal.abstract |
Soil Moisture can be described as the level of saturation in the upper soil layer relative to the soil field capacity, regulated by the precipitation and potential evaporation, while being highly variable in space and time. It constitutes a key factor for agricultural management such as optimizing the fertilizer rates and irrigation, applying pesticides or herbicides and crop management. Moreover, soil moisture is considered as valuable information in many sectors such as Hydrology, Biogeography, Geomorphology, Agronomy and Climatology. To this end, the main objective in this master thesis was to evaluate the concurrent use of satellite multispectral and SAR radar data for estimating soil moisture in large spatial scales. In particular, Landsat 8 Surface Reflectance data as well as Sentinel 1 GRD SAR data were employed in the region of Arta across the Amvrakikos Gulf and the Amvrakikos Wetlands Natural Park. Recent studies have indicated that the amplitude derived by SAR data in VV polarization along with information about the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Moisture Index (NDMI) and the Moisture Index (MI) from multispectral data can be proxies of soil moisture. In-situ measurements from the Enhydris project were also acquired spanning three different years. Google Earth Engine was exploited for mining the satellite data through the Javascript API services. Then several experiments we performed in order to establish correlations between the Ιn-Situ and satellite data based on statistical and machine learning tools like Linear Regression, Polynomial Regression, Generalized Additive Models (based on R Statistical tool), as well deep learning models, using the TensorFlow Framework in association with the Keras library in R. Generally speaking, based on the considered relative large, multitemporal dataset, the statistical approaches did not manage to establish concrete correlations in any of the performed experiments and combinations. The MI index along with the VV backscatter though was closer to the expressed variation in the In-Situ dataset. Based on the deep machine learning framework, stronger correlations were established between the In-Situ data from Enhydris and a combination of VV amplitude and NDVI satellite observations. |
en |
heal.advisorName |
Καράντζαλος, Κωνσταντίνος |
el |
heal.committeeMemberName |
Αργιαλάς, Δημήτριος |
el |
heal.committeeMemberName |
Μπαρούχας, Παντελής |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Αγρονόμων και Τοπογράφων Μηχανικών |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
114 σ. |
el |
heal.fullTextAvailability |
true |
|