HEAL DSpace

Soil Moisture Estimation based on Multispectral and SAR Satellite Data using Google Earth Engine and Machine Learning

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Πέγιου - Μαλακού, Βασιλική - Μαρία el
dc.contributor.author Pegiou - Malakou, Vasiliki - Maria en
dc.date.accessioned 2019-12-23T09:41:05Z
dc.date.available 2019-12-23T09:41:05Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/49633
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.17331
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Γεωπληροφορική” el
dc.rights Default License
dc.subject Τηλεπισκόπιση en
dc.subject Παρατήρηση της Γής el
dc.subject Ραντάρ el
dc.subject Μηχανική Μάθηση el
dc.subject Εδαφική υγρασία el
dc.subject Remote Sensing en
dc.subject Earth Observation en
dc.subject Radar en
dc.subject High Resolution en
dc.subject Deep Learning, en
dc.subject Soil en
dc.title Soil Moisture Estimation based on Multispectral and SAR Satellite Data using Google Earth Engine and Machine Learning en
dc.title Εκτίμηση Εδαφικής Υγρασίας από Πολυφασματικά και Ραντάρ Δορυφορικά Δεδομένα με χρήση του Google Earth Engine και Τεχνικών Μηχανικής Μάθησης el
heal.type masterThesis
heal.classification ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ el
heal.classification ΤΗΛΕΠΙΣΚΟΠΗΣΗ el
heal.classification GEO-INFORMATICS en
heal.classification Remote sensing en
heal.classificationURI http://data.seab.gr/concepts/0470dde7ed974578bbc4961549816f7b254efcb2
heal.classificationURI http://data.seab.gr/concepts/29f3834f510e2fcbee2fcce329a355775dd48e27
heal.classificationURI http://data.seab.gr/concepts/0470dde7ed974578bbc4961549816f7b254efcb2
heal.classificationURI http://skos.um.es/unescothes/C03347
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2018-10-25
heal.abstract Soil Moisture can be described as the level of saturation in the upper soil layer relative to the soil field capacity, regulated by the precipitation and potential evaporation, while being highly variable in space and time. It constitutes a key factor for agricultural management such as optimizing the fertilizer rates and irrigation, applying pesticides or herbicides and crop management. Moreover, soil moisture is considered as valuable information in many sectors such as Hydrology, Biogeography, Geomorphology, Agronomy and Climatology. To this end, the main objective in this master thesis was to evaluate the concurrent use of satellite multispectral and SAR radar data for estimating soil moisture in large spatial scales. In particular, Landsat 8 Surface Reflectance data as well as Sentinel 1 GRD SAR data were employed in the region of Arta across the Amvrakikos Gulf and the Amvrakikos Wetlands Natural Park. Recent studies have indicated that the amplitude derived by SAR data in VV polarization along with information about the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Moisture Index (NDMI) and the Moisture Index (MI) from multispectral data can be proxies of soil moisture. In-situ measurements from the Enhydris project were also acquired spanning three different years. Google Earth Engine was exploited for mining the satellite data through the Javascript API services. Then several experiments we performed in order to establish correlations between the Ιn-Situ and satellite data based on statistical and machine learning tools like Linear Regression, Polynomial Regression, Generalized Additive Models (based on R Statistical tool), as well deep learning models, using the TensorFlow Framework in association with the Keras library in R. Generally speaking, based on the considered relative large, multitemporal dataset, the statistical approaches did not manage to establish concrete correlations in any of the performed experiments and combinations. The MI index along with the VV backscatter though was closer to the expressed variation in the In-Situ dataset. Based on the deep machine learning framework, stronger correlations were established between the In-Situ data from Enhydris and a combination of VV amplitude and NDVI satellite observations. en
heal.advisorName Καράντζαλος, Κωνσταντίνος el
heal.committeeMemberName Αργιαλάς, Δημήτριος el
heal.committeeMemberName Μπαρούχας, Παντελής el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Αγρονόμων και Τοπογράφων Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 114 σ. el
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής