HEAL DSpace

FPGA-oriented deep learning for earth observation image classification

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Σταυριανού, Ασπασία el
dc.contributor.author Stavrianou, Aspasia en
dc.date.accessioned 2020-03-10T09:04:12Z
dc.date.available 2020-03-10T09:04:12Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/49918
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.17616
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Νευρωνικό δίκτυο el
dc.subject Συνελικτικό δίκτυο el
dc.subject Βελτιστοποίηση μνήμης el
dc.subject Βαθιά μάθηση el
dc.subject Πλατφόρμα FPGA el
dc.subject ZYNG-7 ZC702 en
dc.subject hls4ml en
dc.subject ML-Suite en
dc.subject Keras el
dc.subject Time profiling en
dc.title FPGA-oriented deep learning for earth observation image classification en
heal.type bachelorThesis
heal.classification FPGA-oriented machine learning en
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2019-11-11
heal.abstract Στην συγκεκριμένη διπλωματική εργασία σχεδιάστηκαν νευρωνικά δίκτυα με την βοήθεια του keras στο tensorflow με στόχο την υλοποίησή τους σε πλατφόρμα FPGA. Χρησιμοποιήθηκαν και εκπαιδεύτηκαν δεδομένα από δύο διαγωνισμούς της kaggle, ένας αναγνώρισης παγόβουνων και ένας αναγνώρισης πλοίων. Για την εκπαίδευση των μοντέλων έγινε χρήση πλήρως συνδεδεμένων νευρωνικών δικτύων και συνελικτικών νευρωνικών δικτύων. Ταυτόχρονα για τα δεδομένα αναγνώρισης πλοίων που ήταν περισσότερα, μεγάλο ενδιαφέρον δόθηκε στην βελτιστοποίηση του συνελικτικού μοντέλου ως προς την μνήμη. Αυτό επιτεύχθηκε εφαρμόζοντας δύο τρόπους. Ο πρώτος ήταν αλλάζοντας την αρχιτεκτονική του δικτύου μειώνοντας έτσι τον αριθμό των παραμέτρων προς εκπαίδευση κατά 10 φορές. Ο δεύτερος ήταν η μετατροπή του τύπου των παραμέτρων από απλής ακρίβειας (float32) σε μισής ακρίβειας (float16) που έφερε επιπλέον μείωση της μνήμης. Στο δεύτερο μέρος της διπλωματικής, δοκιμάσαμε τρία εργαλεία το LeFlow, το hls4ml και της Xilinx το Machine Learning Suite για μετατροπή του μοντέλου σε μορφή συμβατή για εφαρμογή σε πλατφόρμα FPGA. Τελικά, μεγαλύτερη έμφαση δόθηκε στο εργαλείο hls4ml με το οποίο καταφέραμε να εφαρμόσουμε το μοντέλο στην πλακέτα ZYNQ-7 ZC702. Λόγω της φύσης του εργαλείου, σε πολύ μικρό χρόνο ανάπτυξης (περίπου μισό μήνα), πετύχαμε να υλοποιήσουμε το νευρωνικό δίκτυο χρησιμοποιώντας αποκλειστικά την μνήμη της προγραμματιζόμενης λογικής και με τελικό throughput 35 Images/sec. el
heal.advisorName Σούντρης, Δημήτριος
heal.committeeMemberName Τσανάκας, Παναγιώτης
heal.committeeMemberName Σούντρης, Δημήτριος
heal.committeeMemberName Γκούμας, Γεώργιος
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών. Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων VLSI el
heal.academicPublisherID ntua
heal.numberOfPages 115 σ.
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα