dc.contributor.author | Ανεβλαβή, Δήμητρα | el |
dc.contributor.author | Anevlavi, Dimitra | en |
dc.date.accessioned | 2020-04-07T20:38:20Z | |
dc.date.available | 2020-04-07T20:38:20Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/50095 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.17793 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Boundary element methods | en |
dc.subject | Finite element methods | en |
dc.subject | Fluid mechanics | en |
dc.subject | Hydroelasticity | en |
dc.subject | Μέθοδος πεπερασμένων στοιχείων | el |
dc.subject | Μέθοδος συνοριακών στοιχείων | el |
dc.subject | Biomimetics | en |
dc.subject | Υπολογιστική ρευστομηχανική | el |
dc.subject | Βιομιμητική | el |
dc.subject | Υδροελαστικότητα | el |
dc.title | Hydroelastic analysis of flapping foils by a coupled BEM-FEM with application to marine energy extraction devices | en |
heal.type | bachelorThesis | |
heal.classification | Υπολογιστική μηχανική | el |
heal.language | en | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2019-03-14 | |
heal.abstract | Out of the numerous applications of biomimetic, aquatic inspired devices based on oscillating hydrofoils are able to achieve high levels of efficiency either for propulsion or for tidal energy extraction in nearshore and coastal regions. The ability to account and properly design for flexibility effects has the potential to further enhance the overall performance of such systems. In the present work, a hydro-elastic model is proposed for investigating the effects of chord-wise flexibility on the performance of flapping foils with variable flexural rigidity, and whose structural response is actuated by unsteady pressure field caused by the prescribed harmonic motion of the hydro-mechanical system. A fluid-structure interaction numerical method has been developed to simulate the time-dependent structural response of the oscillating hydrofoil. We present a low order boundary element panel method (BEM) for the unsteady hydrodynamics, coupled with a finite element method (FEM) for the cylindrical bending of thin elastic plates, based on the classical Kirchhoff-Love theory. Numerical results are presented concerning the performance of the system over a range of design and operation parameters, including Strouhal number, heaving and pitching amplitudes and effective angle of attack. To further illustrate the capabilities of the developed BEM-FEM coupled model, we validate the numerical scheme with experimental data, for the case of a chord-wise flexible thin plate under enforced heaving motion excited at the leading edge. The present model could serve as a useful tool in the design, assessment and control of biomimetic systems for renewable energy extraction. | en |
heal.advisorName | Μπελιμπασσάκης, Κωνσταντίνος | el |
heal.committeeMemberName | Πολίτης, Γεράσιμος | el |
heal.committeeMemberName | Τριανταφύλλου, Γεώργιος | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Ναυτικής και Θαλάσσιας Υδροδυναμικής. Εργαστήριο Ναυτικής και Θαλάσσιας Υδροδυναμικής | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 113 σ. | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: