dc.contributor.author |
Γεωργιάδης, Παναγιώτης
|
el |
dc.contributor.author |
Georgiadis, Panagiotis
|
en |
dc.date.accessioned |
2020-04-26T19:07:14Z |
|
dc.date.available |
2020-04-26T19:07:14Z |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/50257 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.17955 |
|
dc.rights |
Default License |
|
dc.subject |
Μηχανική Μάθηση |
el |
dc.subject |
Συνελικτικό Νευρωνικό Δίκτυο |
el |
dc.subject |
Few-shot Learning |
en |
dc.title |
Κατηγοριοποίηση σε εφαρμογές χειρόγραφων χαρακτήρων με λίγα παραδείγματα |
el |
dc.contributor.department |
Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών |
el |
heal.type |
bachelorThesis |
|
heal.classification |
Τεχνητή Νοημοσύνη |
el |
heal.classification |
Βαθιά Μάθηση |
el |
heal.classification |
΄Οραση Υπολογιστών |
el |
heal.classification |
Μηχανική Μάθηση |
el |
heal.language |
el |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2019-10-29 |
|
heal.abstract |
Η ολοένα και αυξανόμενη χρήση των νευρωνικών δικτυών είναι αποτέλεσμα της εκπληκτικής ικανότητας τους να γενικεύουν και να μαθαίνουν καλές αναπαραστάσεις των δεδομένων. Ωστόσο η επιδόση τους είναι συνάρτηση του πλήθους των παραδειγμάτων που διαθέτουν για την εκπαιδευσή τους. Η εργασία αυτή εκτελεί ανάλυση των βασικών χαρακτηριστικών των δικτύων που χρησιμοποιούνται σε περιπτώσεις με πολύ λίγα παραδείγματα, όπου οι παραδοσιακές μορφές νευρωνικών δικτύων αποτυγχάνουν. Στο πλαίσιο αυτής της εργασίας συγκρίνουμε τις αρχιτεκτονικές στο πλαίσιο του One-shot learning, δηλαδή στην ικανότητα τους να μάθουν μια καινούργια κλάση, με μόνο ένα παράδειγμα από την κλάση αυτή. Συγκεκριμένα αναλύονται οι κυρίαρχες αρχιτεκτονικές που έχουν χρησιμοποιηθεί στο ευρέως διαδεδομένο Omniglot Dataset. Οι αρχιτεκτονικές συγκρίνονται τόσο ως προς την ικανότητα τους να διακρίνουν τους χαρακτήρες όσο και ως προς τις παραμέτρους που χρησιμοποιούν και τον χρόνο εκπαίδευσης. Στη συνέχεια υλοποιούνται ορισμένες από τις τεχνικές αυτές χρησιμοποιώντας το ίδιο συνελικτικό δίκτυο ως εξαγωγέα χαρακτηριστικών, το οποίο συνεπάγεται ότι έχουν σχεδόν το ίδιο σύνολο παραμέτρων μάθησης για να επιλύσουν το πρόβλημα (όποιες επιπλεόν παράμετροι χρησιμοποιούνται για την επίλυση του προβλήματος αναφέρονται). Οι μέθοδοι εκπαιδεύονται και αξιολογούνται σε χαρακτήρες από την ίδια αλφάβητο αλλά και από διαφορετικές, συγκρίνοντας τα αποτελέσματα όλων των διαφορετικών περιπτώσεων. Παράλληλα μελετώνται τεχνικές που μπορούν να χρησιμοποιηθούν για να βελτιώσουν την επίδοση των συστημάτων και προτείνονται κατευθύνσεις για μελλοντική έρευνα. |
el |
heal.advisorName |
Στάμου, Γιώργος |
el |
heal.advisorName |
Τζούβελη, Παρασκευή |
el |
heal.committeeMemberName |
Στάμου, Γιώργος |
el |
heal.committeeMemberName |
Παπασπύρου, Νικόλαος |
el |
heal.committeeMemberName |
Σταφυλοπάτης, Ανδρέας-Γεώργιος |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
70 σ. |
el |
heal.fullTextAvailability |
false |
|