HEAL DSpace

Παραγοντοποίηση τανυστή με πληροφορίες δικτύου για τον εντοπισμό ψευδών ειδήσεων

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Παπαναστασίου, Ευφροσύνη el
dc.contributor.author Papanastasiou, Effrosyni en
dc.date.accessioned 2020-05-18T13:47:50Z
dc.date.available 2020-05-18T13:47:50Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/50623
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.18321
dc.rights Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nd/3.0/gr/ *
dc.subject Machine learning en
dc.subject CP decomposition en
dc.subject Fake news en
dc.subject Tensor factorization en
dc.subject Social networks en
dc.title Παραγοντοποίηση τανυστή με πληροφορίες δικτύου για τον εντοπισμό ψευδών ειδήσεων el
dc.title Network-based tensor factorization with label information for fake news detection en
heal.type bachelorThesis
heal.classification Machine learning en
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2019-11-25
heal.abstract Social media usage for news consumption has grown excessively during the last years. Along with it came the spread of large amounts of "fake news" that are deliberately written to deceive readers. Due to the serious consequences of mass misinformation, fake news detection is considered an urgent technological issue in need of automated solutions. In related literature, we can find several attempts to detect fake news only from its content, but their performance is generally considered non-satisfactory. Hence, we need to incorporate auxiliary information, coming from the network, in order to be able to identify misinformation more accurately. Our intuition is that the network connections of users that share fake news can be discriminatory enough to facilitate the detection of fake news. Consequently, the aim of this thesis is to detect fake news using network-based information and some labeled data. Firstly, we present a novel tensor-based way of representing the news pieces using only the friendships between users who have shared the news. Then, we wish to exploit this representation and a set of labels we have in hand, by developing a tensor factorization method that associates the class information of some posts with their latent representations. Finally, we end up with a unified optimization process that integrates a classification error term inside the factorization itself. Results on real-world datasets demonstrate the effectiveness of our proposed method and suggest that it can become competitive against existing state-of-the-art methods, by employing an arguably simpler approach. en
heal.advisorName Στάμου, Γιώργος el
heal.committeeMemberName Στάμου, Γιώργος el
heal.committeeMemberName Παπασπύρου, Νικόλαος el
heal.committeeMemberName Σταφυλοπάτης, Ανδρέας-Γεώργιος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 68 σ.
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Όχι Παράγωγα Έργα 3.0 Ελλάδα