HEAL DSpace

Real-time Virtual Sensor for NOx emisions and stoichiometric air-fuel ratio λ of a Marine Diesel Engine Using Neural Networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Δημητρακόπουλος, Παντελής el
dc.contributor.author Dimitrakopoulos, Pantelis en
dc.date.accessioned 2020-06-03T09:43:36Z
dc.date.available 2020-06-03T09:43:36Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/50751
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.18449
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Ναυτική και Θαλάσσια Τεχνολογία και Επιστήμη” el
dc.rights Αναφορά Δημιουργού - Παρόμοια Διανομή 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-sa/3.0/gr/ *
dc.subject Recurrent Neural Networks en
dc.subject Timeseries prediction en
dc.subject Emisions en
dc.subject Internal Combustion Engines en
dc.subject Virtual Sensor en
dc.title Real-time Virtual Sensor for NOx emisions and stoichiometric air-fuel ratio λ of a Marine Diesel Engine Using Neural Networks en
dc.title Εικονικά αισθητήρια πραγματικού χρόνου για τον υπολογισμό των εκπομπών ρύπων ΝΟx και του στοιχιομετρικού λόγου αέρα-καύσης λ με νευρωνικά δίκτυα el
heal.type masterThesis
heal.classification Internal Combustion Engines en
heal.classification Neural Networks en
heal.classification Machine Learning en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2019-11-01
heal.abstract λ value and NOx mass species have been proven important variables to emissions control and reduction for marine diesel engines. Models for these quantities can substitute real sensors that are often cost ineffecient and faulty. On top of that, model based control for emissions must operate on the basis of fast and accurate models. Arti cial neural networks (ANN) are data based models that calculate predictions on relatively simple operations using non-linear functions. They appear in many avors and con gurations. In the present work, the time-delay neural network (TDNN) and recurrent neural networks (RNN) with inputs delay are investigated as models for λ value and NOx variables. Speci cally, virtual sensors were developed for marine diesel engine's turbine-out NOx emisions and λ value based on raw measurements from laboratory data acquisition. A method was developed to search for the optimal neural network con guration between time-delay neural network models and recurrent neural network models with inputs delay. Model inputs are decided based on traditional thermodynamic models, such as the Zeldovich mechanism for NOx formation, and the available quantities sensors in any inmarket marine engine. The resulting models capture the non-linear phenomenon of NOx formation and changes in λ value of the marine diesel engine. Calculations performance is fast and portability of the models is easy. The resulting neural network models are deployed on an ECU prototype machine and they are validated in real-time side by side with the real system's sensors. The validation tests include engine operating points within the training range but of different pattern. The real-time validation for the recurrent neural network models shows that their predictions stay consistent in most operating areas and the dynamic behavior of the emissions variables is captured and reproduced accurately. The recurrent neural network model for λ value was compared against a rst principle physics based virtual sensor with more accurate results. Therefore, the validation proves that the RNN models generalize adequately within the training range with the minimum possible complexity. On the other hand, the time-delay neural network models are more complex and they do not exemplify the same accuracy in the validation tests, especially in unknown to them operating areas. As a result, the recurrent neural network models with input delay are suggested to be used as benchmark models for emissions control applications. en
heal.advisorName Papalambrou, George en
heal.advisorName Παπαλάμπρου, Γεώργιος el
heal.committeeMemberName Κυρτάτος, Νικόλαος el
heal.committeeMemberName Kyrtatos, Nikolaos en
heal.committeeMemberName Παπαδόπουλος, Χρήστος el
heal.committeeMemberName Papadopoulos, Christos el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 98 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού - Παρόμοια Διανομή 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού - Παρόμοια Διανομή 3.0 Ελλάδα