HEAL DSpace

Bayesian Update on Nonlinear Multiscale Systems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Πυριαλάκος, Στέφανος-Χρήστος el
dc.contributor.author Pyrialakos, Stefanos-Christos en
dc.date.accessioned 2020-06-23T08:03:50Z
dc.date.available 2020-06-23T08:03:50Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/50811
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.18509
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Υπολογιστική Μηχανική” el
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Bayesian Update en
dc.subject Nonlinear analysis en
dc.subject Finite element analysis en
dc.subject Multiscale systems en
dc.subject Μπειζιανή Αναβάθμιση el
dc.subject Μη γραμμική ανάλυση el
dc.subject Πεπερασμένα στοιχεία el
dc.subject Πολλαπλές Κλίμακες el
dc.title Bayesian Update on Nonlinear Multiscale Systems en
heal.type masterThesis
heal.classification Υπολογιστική Μηχανική el
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2020-03-04
heal.abstract Mechanicals systems are often uncertain in their response under different conditions. Examples of such uncertainties include experimental errors, lack of data, uncertain model parameters, and systematic model inadequacy. This uncertainty is most of the times a hard task to define properly. The overall uncertainty can be decomposed on a number of different parameters that affect the system with several ways. These parameters are not always straight forward and the connection of their probabilistic structure with that of the whole system’s may not be possible to be found from beforehand. A characteristic example of this issue is the investigation of the uncertainty of the microstructure for heterogeneous materials. The direct investigation of the microstructure is a very challenging and costly task. This issue can be countered efficiently by taking advantage of the high amount of information and data that can be collected and stored while observing the system’s response macroscopically and with a multiscale approach update the random microscale parameters. The Bayesian framework, which combines new information with preexisting models, can be used in order to update the microscopic scales with acquired data from the investigation of either those scales or related macroscopic scales. Several studies have been done for the stochastic formulation of microstructures that ultimately define the macrostructure (i.e. random wrinkling of graphene sheets [16], stochastic geometric formulation of carbonate rocks [17]), without however any consideration of real data that can reformulate the microstructure. On the other hand, multiscale Bayesian updating has been implemented mainly on image processing studies (i.e. speckle removal in ultrasound images [18], image segmentation [19,20]). However, Bayesian updating on microscopic stochastic parameters of heterogeneous materials based on multiscale procedures have yet to be investigated thoroughly, in spite of the useful information that can be gathered from it. P a g e | 2 Here the Bayesian updating of the probabilistic structure of the uncertain parameters describing the interaction between carbon nanotubes (CNTs) and the surrounding polymer matrix is considered. A MCMC technique with the use of the Metropolis Hastings is implemented on a semi-concurrent multiscale approach (FE2) in order to update the beliefs of the microscopic parameters according to a macroscale deformation observation. The posterior distributions of these parameters are then compared to deterministic solutions of the multiscale model in the direction of verifying the efficiency of the procedure. en
heal.advisorName Παπαδόπουλος, Βησσαρίων el
heal.committeeMemberName Παπαδόπουλος, Βησσαρίων el
heal.committeeMemberName Λαγαρός, Νικόλαος en
heal.committeeMemberName Σπηλιόπουλος, Κωνσταντίνος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Πολιτικών Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 48 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα