HEAL DSpace

Υπολογιστικές Μέθοδοι Παρακολούθησης και Διαχείρισης Ασθενών με Νευρολογικές Παθήσεις

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Τσιούρης, Κωνσταντίνος el
dc.date.accessioned 2020-07-14T09:07:01Z
dc.date.available 2020-07-14T09:07:01Z
dc.date.issued 2020-07-14 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/50864
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.18562
dc.description.abstract Η παρούσα διδακτορική διατριβή επικεντρώνεται στην ανάπτυξη υπολογιστικών μεθόδων για την καλύτερη διαχείριση ασθενών που πάσχουν από επιληψία ή νόσο Parkinson, δύο από τις πιο συνήθεις νευρολογικές παθήσεις. Για τη διαχείριση ασθενών που πάσχουν από επιληψία, προτείνονται μεθοδολογίες που βασίζονται στην ανάλυση του ηλεκτροεγκεφαλογραφήματος (ΗΕΓ), για την αυτόματη ανίχνευση επιληπτικών κρίσεων και την έγκαιρη πρόβλεψη της εμφάνισής τους. Αναπτύχθηκαν καινοτόμες μεθοδολογίες αυτόματης ανίχνευσης κρίσεων οι οποίες σχεδιάστηκαν να λειτουργούν χωρίς επίβλεψη, με κριτήρια ανίχνευσης που βασίζονται στη διαθέσιμη ιατρική γνώση, αντί στην εκπαίδευση με προ-αξιολογημένα δεδομένα. Οι προτεινόμενες μεθοδολογίες αποτελούν τις πρώτες υλοποιήσεις αυτόματης ανίχνευσης επιληπτικών κρίσεων χωρίς επίβλεψη ή εκπαίδευση, και αξιολογήθηκαν με ανοιχτά δεδομένα ΗΕΓ από μεγάλες βάσεις δεδομένων. Η μεθοδολογία πρόβλεψης κρίσεων εισάγει αλγορίθμους βαθιάς μάθησης στην ανάλυση του προκριτικού ΗΕΓ, καθώς χρησιμοποιήθηκε για πρώτη φορά το μοντέλο δικτύων Long Short-Term Memory (LSTM) για την αναγνώριση και ταξινόμηση προκριτικών προτύπων στο ΗΕΓ των ασθενών, μέσα από ένα ευρύ σύνολο χαρακτηριστικών που εξάγονται από το ΗΕΓ μέσω της ανάλυσης στο πεδίο του χρόνο και της συχνότητας, τη συσχέτιση μεταξύ των καναλιών και των πιο γνωστών μετρικών από τη θεωρεία των Γράφων. Για τη διαχείριση των ασθενών με νόσο Parkinson, εξάγονται προγνωστικοί παράγοντες που δηλώνουν τον αυξημένο κίνδυνο εμφάνισης ταχύτερης εξέλιξης των συμπτωμάτων της νόσου Parkinson, ή την εμφάνιση πρώιμων γνωστικών διαταραχών, χρησιμοποιώντας τεχνικές εξόρυξης και αλγορίθμους μηχανικής μάθησης. Η μεθοδολογία βασίζεται σε πολυπαραμετρικές αξιολογήσεις των αρχικών συμπτωμάτων από περίπου 600 χαρακτηριστικά, τα οποία προέρχονται από ανοιχτά δεδομένα. Επίσης, αναπτύσσονται συστήματα υποστήριξης απόφασης που βοηθούν στην αξιολόγηση της κατάστασης των ασθενών και την καλύτερη παρακολούθηση της εξέλιξης της νόσου με βάση τα στάδια της κλίμακας Hoehn & Yahr. Το προτεινόμενο σύστημα αποτελεί την πρώτη προσέγγιση σε αυτόν τον τομέα που βασίζεται σε αλγορίθμους μηχανικής μάθησης για την ανάλυση των κινητικών συμπτωμάτων των ασθενών με νόσο Parkinson και την αντιστοίχισή τους στα πέντε στάδια της κλίμακας Hoehn & Yahr. el
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Πρόβλεψη επιληπτικών κρίσεων el
dc.subject Ανίχνευση επιληπτικών κρίσεων el
dc.subject Δίκτυα βαθιάς μάθησης el
dc.subject Προγνωστικοί παράγοντες νόσου Parkinson el
dc.subject Συστήματα υποστήριξης κλινικών αποφάσεων el
dc.subject Epileptic seizure prediction en
dc.subject Epileptic seizure detection en
dc.subject Deep learning algorithms en
dc.subject Prognostic factors for Parkinson's disease en
dc.subject Clinical decision support systems en
dc.title Υπολογιστικές Μέθοδοι Παρακολούθησης και Διαχείρισης Ασθενών με Νευρολογικές Παθήσεις el
dc.contributor.department ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ el
heal.type doctoralThesis
heal.classification Βιοϊατρική Τεχνολογία el
heal.language el
heal.access campus
heal.recordProvider ntua el
heal.publicationDate 2020-03-09
heal.advisorName Κουτσούρης, Δημήτριος-Διονύσιος el
heal.committeeMemberName Κουτσούρης, Δημήτριος-Διονύσιος el
heal.committeeMemberName Φωτιάδης, Δημήτριος el
heal.committeeMemberName Ματσόπουλος, Γεώργιος el
heal.committeeMemberName Τσανάκας, Παναγιώτης el
heal.committeeMemberName Κονιτσιώτης, Σπυρίδων el
heal.committeeMemberName Έξαρχος, Θεμιστοκλής el
heal.committeeMemberName Μπαμίδης, Παναγιώτης el
heal.academicPublisher Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών el
heal.academicPublisherID ntua
heal.numberOfPages 340 σ
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα