HEAL DSpace

Development of a ship autopilot using neural network

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Gouletas, Stefanos en
dc.contributor.author Γουλέτας, Στέφανος el
dc.date.accessioned 2020-09-28T11:14:00Z
dc.date.available 2020-09-28T11:14:00Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/51177
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.18875
dc.rights Default License
dc.subject Autopilot en
dc.subject Naval en
dc.subject Control system en
dc.subject Neural network en
dc.subject Artificial intelligence en
dc.subject Σύστημα ελέγχου el
dc.subject Τεχνητή νοημοσύνη el
dc.subject Αυτόματος πιλότος el
dc.subject Ναυπηγική el
dc.subject Νευρωνικά δίκτυα el
dc.title Development of a ship autopilot using neural network en
heal.type bachelorThesis
heal.classification Control system engineering en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2020-02-12
heal.abstract This Thesis concerns the development of a neural network autopilot which will be used for vessel controlling. The main purpose of this project is to use alternative and more sophisticated technologies like artificial intelligence in contrast with the commonly used PID controllers. The Neural Network controller was constructed using Python libraries (Tensorflow and Keras), which have been used for the easier and more efficient training and building. For the representation of the ship system, we used two different mathematical models, one linear (Nomoto Model) and one more complicated based on the hydrodynamic coefficients, in order to make the system more realistic (4DOF Model). For testing, we executed a simple course keeping simulation to check the suitability of the controller. Even then in order to observe the efficiency of the neural network controller, we use it in a path following scenario in which the vessel should follow a predefined course. The performance of the neural network controller is compared to classical PID control results which are implemented for the same simulation scenarios. We conclude that artificial intelligence and more specifically Neural Networks is a very important tool which could be used for more efficient and effective controllers that could process more informations as sea state, weather and fuel optimization. en
heal.advisorName Papalambrou, George en
heal.committeeMemberName Spyrou, Kostas en
heal.committeeMemberName Papadopoulos, Christos en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Ναυτικής Μηχανολογίας el
heal.academicPublisherID ntua
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής