HEAL DSpace

The Extended Finite Element Method for crack propagation problems: Theory and implementation details

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Bakalakos, Serafeim el
dc.date.accessioned 2020-10-13T07:37:41Z
dc.date.available 2020-10-13T07:37:41Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/51406
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.19104
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Εκτεταμένη Μέθοδος Πεπερασμένων Στοιχείων, Διάδοση ρωγμών, Γραμμική Ελαστική Θραυστομηχανική, Υλοποίηση el
dc.subject XFEM, Extended Finite Element Method, Crack propagation, Linear Elastic Fracture Mechanics, Implementation en
dc.title The Extended Finite Element Method for crack propagation problems: Theory and implementation details en
dc.contributor.department Institute Of Structural Analysis and Antiseismic Research el
heal.type masterThesis
heal.classification Structural Engineeirng el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2017-10-25
heal.abstract In this thesis, the eXtended Finite Element Method (XFEM) is implemented to model crack interfaces. XFEM avoids the need of conforming the finite element mesh to the crack geometry each time the crack propagates. Instead the displacement field is allowed to be discontinuous across the crack interface, by enriching the finite dimensional spaces with appropriate functions. Enrichment functions can be used to locally incorporate known behavior into the polynomial approximation of traditional FEM. For domains containing cracks, fracture mechanics provides analytic expressions of the displacement field near the crack tip, in addition to it being discontinuous across the crack body. Predicting the crack propagation path is based on Linear Elastic Fracture Mechanics. The stress intensity factors (SIFS) are evaluated to describe the singular stress field near the crack tip and estimate the crack growth direction. A versatile and robust technique to calculate the SIFs is the J-integral method, which is suitable for computations over a finite element mesh. This thesis is concerned with crack propagation in brittle, linear elastic materials. XFEM is applied to 2D structures under static loading. Although extending XFEM to 3D is straightforward, an accurate and efficient method to describe 3D crack geometries is the subject of ongoing research. Instead this document delves into the details of crack propagation analysis. Many algorithms and implementation details are presented for XFEM, the J-integral technique and the methods used to represent the crack geometries. Alongside this document, C# code has been developed to implement the described theories and algorithms. This code is freely available as part of the open source software MSolve for structural analysis and design, developed by the Institute of Structural Analysis and Antiseismic Research at the National Technical University of Athens. en
heal.advisorName Georgioudakis, Manolis el
heal.committeeMemberName Papadrakakis, Manolis el
heal.committeeMemberName Papadopoulos, Vissarion el
heal.committeeMemberName Spiliopoulos, Konstantinos el
heal.academicPublisher Σχολή Πολιτικών Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 220
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα