HEAL DSpace

A Risk-based approach and computational Bayesian framework for off-line condition monitoring of marine diesel engine crankcase lubrication.

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Αννέτης, Εμμανουήλ el
dc.contributor.author Annetis, Emmanouil en
dc.date.accessioned 2020-10-14T07:12:19Z
dc.date.available 2020-10-14T07:12:19Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/51438
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.19136
dc.rights Default License
dc.subject Dynamic Bayesian networks en
dc.subject Risk analysis en
dc.subject Condition monitoring en
dc.subject Lubrication oil analysis en
dc.subject deterioration model en
dc.subject Prediction model en
dc.subject Ανάλυση ρίσκου el
dc.subject Ανάλυση λαδιού ναυτικού κινητήρα el
dc.subject Μοντέλα πρόβλεψης el
dc.subject Δυναμικά δίκτυα πίστεως el
dc.subject Παρακολούθηση κατάστασης ναυτικού κινητήρα el
dc.subject Μοντέλα γήρανσης el
dc.title A Risk-based approach and computational Bayesian framework for off-line condition monitoring of marine diesel engine crankcase lubrication. en
heal.type bachelorThesis
heal.classification Marine engineering en
heal.classification Risk analysis en
heal.classification Bayesian networks en
heal.classification Probabilistic models en
heal.classification Ναυτική μηχανολογία el
heal.classification Μοντέλα πρόβλεψης el
heal.classification Ανάλυση ρίσκου el
heal.language en
heal.access campus
heal.recordProvider ntua el
heal.publicationDate 2020-07-27
heal.abstract Present thesis attempts an introduction to machine learning methodologies. This introduction is attempted along with the creation of a dynamic probabilistic predictive model which simulates deterioration trends. The general approach for such a model is a risk-based approach. Risk can be useful for decision making, as it considers the expected value of the degree of impact. The implementation of such a model is achieved through a dynamic probabilistic graphical model, namely a dynamic Bayesian belief network. Dynamic Bayesian networks are a powerful tool for risk modeling and for creating prediction models. The graphical representation of Bayesian networks makes them understandable and accessible even to non-familiar researchers or maritime executives. The above methodology is implemented on the lubrication of marine diesel engine, namely the main engine of large commercial vessels. Studies show that there are enough motivating reasons for this specific focus, as lubrication failures are the most significant cause of damage, both in number and average cost. Meanwhile, considering a risk-based approach for machinery systems constitutes a challenge, since they are not widely adopted. Thus, a dynamic Bayesian network is developed which simulates deterioration of engine components, oil degradation, and the off-line condition monitoring technique of oil analysis along with subsequent maintenance and repairs. Oil analysis is introduced to the system as the most common condition monitoring technique for marine engine lubrication. Additionally, an effective modeling of dependencies among lubricant properties, lubrication system parameters, failure mechanisms and failing components must be produced in order to achieve realistic simulations. Real data and respective analysis, along with expert elicitation and literature references are utilized for achieving model quantification. A variety of oil analysis interval schemes are defined, and a decision upon the most beneficial scheme follows, based on risk comparison. Matlab programming is used, along with the Bayes Net toolbox libraries, for producing the code of the model. en
heal.advisorName Βεντίκος, Νικόλαος el
heal.advisorName Ventikos, Nikolaos en
heal.committeeMemberName Βεντίκος, Νικόλαος el
heal.committeeMemberName Σαμουηλίδης, Εμμανουήλ el
heal.committeeMemberName Ηλιοπούλου, Ελευθερία el
heal.committeeMemberName Ventikos, Nikolaos en
heal.committeeMemberName Samouilidis, Emmanouil en
heal.committeeMemberName Iliopoulou, Eleftheria en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Μελέτης Πλοίου και Θαλάσσιων Μεταφορών el
heal.academicPublisherID ntua
heal.numberOfPages 159 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής