HEAL DSpace

Investigation of the bullwhip effect in the LNG supply chain and evaluation of mitigation methods

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Βαφειάδης, Ιωάννης el
dc.contributor.author Vafeiadis, Ioannis en
dc.date.accessioned 2020-11-02T17:48:31Z
dc.date.available 2020-11-02T17:48:31Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/51756
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.19454
dc.rights Default License
dc.subject Διαταραχή παραγγελιών el
dc.subject ΥΦΑ el
dc.subject Εφοδιαστική αλυσίδα el
dc.subject Νευρωνικά δίκτυα el
dc.subject Τεχνητή νοημοσύνη el
dc.subject Ρεβυθούσσα el
dc.subject Bullwhip effect en
dc.subject Supply chain en
dc.subject LNG en
dc.subject Neural networks
dc.subject Artificial intelligence en
dc.subject Revithoussa en
dc.title Investigation of the bullwhip effect in the LNG supply chain and evaluation of mitigation methods en
dc.title Μελέτη του φαινομένου διαταραχής παραγγελιών και αξιολόγηση λύσεων για την άμβλυνση του el
heal.type bachelorThesis
heal.classification Επιχειρησιακή Έρευνα el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2020-09-30
heal.abstract The scope of this thesis was the development of a methodology able to examine the scale of the bullwhip effect in the LNG supply chain, estimate how an LNG Terminal influences the network, and evaluate solutions for the mitigation of the effect. For this purpose, an artificial neural network was designed that can simulate various natural gas demand scenarios and create reliable output. The data used to train the network was daily usage information from the Transmission System Operator, from whose side the optimization was pursued. Specifically, a thorough examination of the LNG market and its prospects for the near future are presented, both at a global and national level. Furthermore, the bullwhip effect is analyzed, initially in the light of operational research and then in particular for the LNG supply chain according to existing research. Afterward, the design of the neural network follows, where its operation and parametrization are explained. The model receives as inputs the total demand of natural gas for a specific day, the demand for electricity production, the loaded capacity of the LNG Terminal of Revithoussa, the LNG imports, the pipeline feed gas imports, and other parameters related to the price of the commodity and returns an estimation for the bullwhip effect for a period of thirty days. This model can be used as a guide for the efficient operation of the natural gas transmission system, as it is able to give a prediction about the behavior of the supply chain according to changes in the import policy or the capacity of the terminal. This way, the mitigation of the demand amplification in the LNG supply chain can be achieved and also, the results can indicate a path for the viability of the system in the upcoming increase in demand for natural gas and electricity production the next years. en
heal.advisorName Λυρίδης, Δημήτριος el
heal.committeeMemberName Λυρίδης, Δημήτριος el
heal.committeeMemberName Βεντίκος, Νικόλαος el
heal.committeeMemberName Τόλης, Αθανάσιος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Μελέτης Πλοίου και Θαλάσσιων Μεταφορών el
heal.academicPublisherID ntua
heal.numberOfPages 107 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής