dc.contributor.author | Ουζουνίδης, Γεώργιος | el |
dc.date.accessioned | 2020-11-11T06:12:58Z | |
dc.date.available | 2020-11-11T06:12:58Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/51891 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.19589 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Deep learning | en |
dc.subject | Neural network | en |
dc.subject | Hyperspectral image | en |
dc.subject | Image classification | en |
dc.subject | Remote sensing | en |
dc.title | Μέθοδοι βαθιάς μάθησης για την ταξινόμηση δορυφορικών υπερφασματικών δεδομένων | el |
dc.contributor.department | Remote Sensing Laboratory | el |
heal.type | bachelorThesis | |
heal.classification | Deep Learning | en |
heal.language | el | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2020-07-27 | |
heal.abstract | This thesis focuses on exploration, presentation, implementation and evaluation of Deep Learning HSI classification methods.More precisely,these described as recent‘state of the art methods’ are utilizedon the satelliteimages of HyRANK dataset.These methods are based on neural networks. Firstly, basic theory principles on neural networks are presented.This section consists of the operation, the components and the various types of neural networks.Then the approach of each method is introduced along with the architecture ofeach network. The layers, the signal path and all the custom modules are presentedin detail.At the end, each method is utilized on theHSI dataset.Εvery prediction and statistics table is evaluated in order to evaluate their effectiveness and analyze their behavior | en |
heal.advisorName | Καράντζαλος, Κωνσταντίνος | el |
heal.committeeMemberName | Αργιαλας, Δημήτρης | el |
heal.committeeMemberName | Καραθανάση, Βασιλεία | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Αγρονόμων και Τοπογράφων Μηχανικών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 132 σ. | el |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: