dc.contributor.author |
Τζεράνης, Σπυρίδων
|
el |
dc.contributor.author |
Tzeranis, Spyridon
|
en |
dc.date.accessioned |
2020-11-24T19:29:52Z |
|
dc.date.available |
2020-11-24T19:29:52Z |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/52046 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.19744 |
|
dc.rights |
Default License |
|
dc.subject |
Μη-επανδρωμένα αεροσκάφη |
el |
dc.subject |
Νευρωνικά δίκτυα |
el |
dc.subject |
Διαρκής διέγερση |
el |
dc.subject |
Εκτίμηση παραμέτρων |
el |
dc.subject |
Αεροδυναμικά μοντέλα και έλεγχος |
el |
dc.subject |
Radial basis function |
en |
dc.subject |
Dynamic regression extension and mixing |
en |
dc.subject |
UAVs |
en |
dc.subject |
Radial basis function neural networks |
en |
dc.subject |
Regression extension and mixing technique |
en |
dc.subject |
Aerodynamic modelling and control |
en |
dc.subject |
Persistency of excitation |
en |
dc.subject |
Dynamic parameter identification |
en |
dc.title |
Σθεναρός έλεγχος προκαθορισμένης ποιότητας και προσαρμοστική μάθηση της διαμήκους δυναμικής μη-επανδρωμένων αεροσκαφών
σταθερής πτέρυγας |
el |
heal.type |
bachelorThesis |
|
heal.classification |
Ρομποτική, Αυτόματος Έλεγχος |
el |
heal.language |
el |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2020-10-21 |
|
heal.abstract |
Κατά την πάροδο των τελευταίων ετών, μεγάλο μέρος της παγκόσμιας ακαδημαϊκής, αλλά
και επιχειρηματικής κοινότητας αφιερώνει πόρους για την μελέτη και κατασκευή αυτόνομων
συστημάτων. Η συγκεκριμένη εργασία εστιάζει στα μη επανδρωμένα εναέρια οχήματα ( Unmanned
Aerial Vehicles-UAVs), οι εφαρμογές των οποίων είναι πλέον ποικίλες. Ενδεικτικά αναφέρονται η
χαρτογράφηση δυσπρόσιτων περιοχών, η μετεωρολογία, η αεροφωτογραφία, η αναζήτηση/διάσωση
και η μεταφορά εμπορευμάτων.
Εν γένει, η ακριβής μοντελοποίηση εναέριων συστημάτων αλλά και του περιβάλλοντος
λειτουργίας τους αποτελεί ένα δύσκολο πρόβλημα, αλλά καθώς οι απαιτήσεις ολοένα και αυξάνονται,
καθίσταται επιτακτικό. Η έννοια της μηχανικής μάθησης απασχολεί την επιστημονική κοινότητα
για πάνω απο μισό αιώνα και έχει χρησιμοποιηθεί στην θεωρία του αυτόματου ελέγχου από
πολλές εργασίες που ανέπτυξαν μεθόδους μάθησης για εκτίμηση παραμέτρων ή για προσέγγιση
μη γραμμικών συναρτήσεων εμπλεκόμενες σε άγνωστη δυναμική συστημάτων. Ο προσαρμοστικός
έλεγχος, παρέχοντας βελτιωμένη απόδοση σε συνθήκες αβεβαιότητας των μοντέλων, έχει αναδυθεί
σε μια προσπάθεια για ταυτόχρονη αναγνώριση και έλεγχο συστημάτων. Παρ’όλα τα σημαντικά
αποτελέσματα που έχουν επιτευχθεί στον προσαρμοστικό έλεγχο, το πρόβλημα της επιτυχούς
μάθησης και ελέγχου άγνωστης δυναμικής συστημάτων σε ένα προκαθορισμένο περιβάλλον
λειτουργίας, παραμένει ακόμα ανοιχτό στο πεδίο της μη γραμμικής αναγνώρισης συστημάτων.
Επιπλέον, ο προσαρμοστικός έλεγχος δεν αποδίδει αποτελεσματικά σε περιπτώσεις ισχυρά
συζευγμένων, μη γραμμικών συστημάτων, όπως τα UAVs. Όμως, ένα γρήγορο προσαρμοστικό
σχήμα ελέγχου είναι απαραίτητο την σύγχρονη εποχή, όπου πλήθος εργoστασιακών αλλά και
κατά παραγγελία κατασκευασμένων UAVs είναι σε πτήση κάθε μέρα, το καθένα με διαφορετικές
παραμέτρους.
Κύριος στόχος της παρούσας εργασίας είναι η online αναγνώριση των μη γραμμικών συναρτήσεων
που εμπλέκονται στην μη γραμμική διαμήκη δυναμική των UAVs, αλλά και η ανάπτυξη μιας μεθοδολογίας
ελέγχου που δεν βασίζεται στην γνώση του μοντέλου, ικανή να εφαρμοστεί σε οχήματα με διαφορετικές
παραμέτρους το καθένα. Βασικά στοιχεία αυτής της έρευνας αποτελούν τα Radial Basis Function
Νευρωνικά Δίκτυα, που είναι κατάλληλα μαθηματικά μοντέλα για καθολική προσέγγιση συναρτήσεων,
η πρόσφατα ανεπτυγμένη Dynamic Regression Extension and Mixing τεχνική, που αποτελεί μια
μέθοδο σχεδίασης εκτιμητών παραμέτρων με βελτιωμένη απόδοση σε σχέση με κλασσικόυς εκτιμητές,
αλλά και η Prescribed Performance Control μεθοδολογία, που επιτρέπει παρακολούθηση τροχιάς
με προκαθορισμένη ποιότητα, ακόμα και υπό πλήρη άγνοια της δυναμικής του συστήματος. |
el |
heal.advisorName |
Ψυλλάκης, Χαράλαμπος |
el |
heal.committeeMemberName |
Κυριακόπουλος, Κωνσταντίνος |
el |
heal.committeeMemberName |
Τζαφέστας, Κωνσταντίνος |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Σημάτων, Ελέγχου και Ρομποτικής |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
90 σ. |
el |
heal.fullTextAvailability |
false |
|