HEAL DSpace

Optimal Communication in Truthful Mechanisms

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Anagnostides, Ioannis G. en
dc.contributor.author Αναγνωστίδης, Ιωάννης Γ. el
dc.date.accessioned 2020-12-17T08:09:58Z
dc.date.available 2020-12-17T08:09:58Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/52580
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.20278
dc.rights Αναφορά Δημιουργού 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by/3.0/gr/ *
dc.subject Mechanim design en
dc.subject Preference elicitation en
dc.subject Communication complexity en
dc.subject Sampling en
dc.subject Generalized median mechanism en
dc.subject Σχεδιασμός μηχανισμών el
dc.subject Εξαγωγή προτιμήσεων el
dc.subject Πολυπλοκότητα επικοινωνίας el
dc.subject Δειγματοληψία el
dc.subject Γενικευμένος διάμεσος μηχανισμός el
dc.title Optimal Communication in Truthful Mechanisms en
dc.title.alternative Βέλτιστη Επικοινωνία σε Φιλαλήθεις Μηχανισμούς el
heal.type bachelorThesis
heal.classification Algorithmic Game Theory en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2020-10-29
heal.abstract This thesis is concerned with efficient preference elicitation in the field of Algorithmic Mechanism Design. More precisely, our goal is to minimize the elicited number of bits from the agents without sacrificing the other desired properties of the mechanism, namely the incentive compatibility guarantee and the social welfare. In this context, our main contribution is twofold. First, we show how to implement a series of well-known mechanisms from Auction Theory with asymptotically optimal communication. Specifically, we initially turn our attention to single-parameter domains, namely single item and multi-unit auctions. For the former, we show that Vickrey's auction can be implemented with an expected communication complexity of at $1 + \epsilon$ bits -- on average -- per bidder, for any $\epsilon > 0$, assuming that the valuations can be represented with a constant number of bits. As a corollary, we provide a compelling method to increment the price in English auctions. Moreover, we design efficient encoding schemes in order to obtain the same asymptotic bound for multi-item auctions with additive bidders and a constant number of items, and for multi-unit auctions with unit demand bidders. Our results follow from simple sampling schemes and do not require any prior knowledge on the agents' parameters. Moreover, we consider Moulin's generalized median mechanism on metric spaces endowed with the $L^1$ norm. This mechanism is of fundamental importance in the realm of Social Choice as it circumvents the Gibbard-Satterthwaite impossibility theorem for the natural setting of single-peaked preferences. We show that a sampling approximation of the median achieves a $1 + \epsilon$ approximation of the optimal social cost, for any $\epsilon > 0$, with a constant sample $c = c(\epsilon)$. Thus, our sampling approximation incurs an arbitrarily small error with an arbitrarily small fraction of the total information. Our main result is established based on the asymptotic characterization of a distribution, and could be of independent interest. en
heal.advisorName Fotakis, Dimitris en
heal.committeeMemberName Pagourtzis, Aris en
heal.committeeMemberName Markakis, Vangelis en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών. Εργαστήριο Λογικής και Επιστήμης Υπολογισμών el
heal.academicPublisherID ntua
heal.numberOfPages 83 p. en
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού 3.0 Ελλάδα