HEAL DSpace

Harnessing alignment and annotation-free information from next generation sequencing experiments to enable tumor specific antigen identification and aI-powered prediction of immune checkpoint inhibitor response

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Κανάτα, Ελένη el
dc.contributor.author Kanata, Eleni en
dc.date.accessioned 2021-01-04T08:31:39Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/52721
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.20419
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Bioinformatics en
dc.subject Immunotherapy en
dc.subject Artificial intelligence en
dc.subject Cancer en
dc.title Harnessing alignment and annotation-free information from next generation sequencing experiments to enable tumor specific antigen identification and aI-powered prediction of immune checkpoint inhibitor response en
heal.type bachelorThesis
heal.secondaryTitle Αξιοποίηση πληροφορίας χωρίς ευθυγράμμιση και χρήση σημειογραφίας από δεδομένα αλληλούχισης νέας γενιάς (NGS), για ταυτοποίηση καρκινικών αντιγόνων και πρόβλεψη της απόκρισης σε αναστολή ανοσολογικού σημείου ελέγχου (ICI) με μοντέλο τεχνητής νοημοσύνης. el
heal.classification Bioinformatics en
heal.dateAvailable 2022-01-03T22:00:00Z
heal.language en
heal.access embargo
heal.recordProvider ntua el
heal.publicationDate 2020-10-05
heal.abstract Immunotherapy harnesses the patient's immune system to elicit anticancer response, enabling long-term remission with low side-effects. Inhibition of Immune Checkpoints, central regulators of self-non-self recognition mechanisms prevents cancer from evading the immune system. However, only a fraction of patients responds to immunotherapy. Being able to predict patient response accurately and timely allows for optimal patient stratification, while maximizing therapeutic outcome.  Next Generation RNA Sequencing offers valuable high-throughput information on the cancer cells' transcriptome, that could be used to inform immunotherapy decisions, bypassing limitations in current approaches focusing on the patient’s exome. Existing computational tools rely on alignment to a reference genome and its annotation, therefore restricting the information space, and limiting its applicability in this context.   This thesis aims to generate beyond the-state-of-the-art RNA-Seq analysis methods and proteogenomic pipelines and apply them to capture a tumor's antigenic profile as well as tο identify personalized immunotherapy targets. It will also generate meaningful predictors that will be incorporated in an artificial intelligence framework and enable for the first time accurate personalized prediction of patient response to Immune Checkpoint Inhibition. The model will be trained and tested on immune checkpoint inhibitor clinical trial data and benchmarked against available markers, scoring systems, and predictors. This system will revolutionize cancer immunotherapy as it will allow quick and reliable clinical decision-making. en
heal.abstract Immunotherapy harnesses the patient's immune system to elicit anticancer response, enabling long-term remission with low side-effects. Inhibition of Immune Checkpoints, central regulators of self-non-self recognition mechanisms prevents cancer from evading the immune system. However, only a fraction of patients responds to immunotherapy. Being able to predict patient response accurately and timely allows for optimal patient stratification, while maximizing therapeutic outcome. Next Generation RNA Sequencing offers valuable high-throughput information on the cancer cells' transcriptome, that could be used to inform immunotherapy decisions, bypassing limitations in current approaches focusing on the patient’s exome. Existing computational tools rely on alignment to a reference genome and its annotation, therefore restricting the information space, and limiting its applicability in this context. This thesis aims to generate beyond the-state-of-the-art RNA-Seq analysis methods and proteogenomic pipelines and apply them to capture a tumor's antigenic profile as well as tο identify personalized immunotherapy targets. It will also generate meaningful predictors that will be incorporated in an artificial intelligence framework and enable for the first time accurate personalized prediction of patient response to Immune Checkpoint Inhibition. The model will be trained and tested on immune checkpoint inhibitor clinical trial data and benchmarked against available markers, scoring systems, and predictors. This system will revolutionize cancer immunotherapy as it will allow quick and reliable clinical decision-making. en
heal.advisorName Vlachos, Ioannis en
heal.committeeMemberName Boudouvis, Andreas en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Χημικών Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 77 p. en
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα