HEAL DSpace

Dynamic Service Detection for Automated Patient Selection for Study Recruitment Purposes

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chondrogiannis, Efthymios
dc.contributor.author Andronikou, Vassiliki
dc.contributor.author Karanastasis, Efstathios
dc.contributor.author Varvarigou, Theodora
dc.date.accessioned 2021-01-07T15:27:01Z
dc.date.available 2021-01-07T15:27:01Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/52733
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.20431
dc.relation info:eu-repo/grantAgreement/EC/H2020/731944 el
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject automated patient selection en
dc.subject service-oriented architecture en
dc.subject dynamic service detection en
dc.subject semantic web en
dc.subject clinical trials en
dc.title Dynamic Service Detection for Automated Patient Selection for Study Recruitment Purposes en
heal.type conferenceItem
heal.classification computer science en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2018-07-05
heal.bibliographicCitation E. Chondrogiannis, V. Andronikou, E. Karanastasis and T. Varvarigou, "Dynamic Service Detection for Automated Patient Selection for Study Recruitment Purposes," 2018 IEEE 34th International Conference on Data Engineering Workshops (ICDEW), Paris, 2018, pp. 72-77, doi: 10.1109/ICDEW.2018.00019. en
heal.abstract ICT-enabled automated processes facilitating subject recruitment in clinical trials is a hot topic in the clinical research domain. However, the successful detection of candidate subjects across patient records of different healthcare providers requires dealing with a variety of issues, including but not limited to different terminologies and structures as well as missing patient data. In this work a novel system for automated patient selection for study recruitment purposes is being presented. The system is based on the dynamic service detection for eligibility criteria evaluation, while the patient data retrieved from each healthcare entity are further processed for clinical research purposes. The presented system is also compared with a different framework that we have already developed in the past that is based on query rewriting and translation for eligibility criteria evaluation purposes. The advantages and limitations of the two aforementioned approaches are being discussed as well as their potential combination for automated patient selection. en
heal.sponsor This work has been partially funded by the European Commission’s activity of the Horizon 2020 project HarmonicSS under contract number 731944.This paper expresses the opinions of the authors and not necessarily those of the European Commission. The European Commission is not liable for any use that may be made of the information contained in this paper. en
heal.publisher IEEE en
heal.fullTextAvailability false
heal.conferenceName 2018 IEEE 34th International Conference on Data Engineering Workshops (ICDEW) en
heal.conferenceItemType full paper
dc.identifier.doi 10.1109/ICDEW.2018.00019 el


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα