HEAL DSpace

Towards a Comprehensive Framework for Climate Change Multi-Risk Assessment in the Mining Industry

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mavrommatis, Evangelos
dc.contributor.author Damigos, Dimitris
dc.contributor.author Mirasgedis, Sevastianos
dc.date.accessioned 2021-01-14T16:29:28Z
dc.date.available 2021-01-14T16:29:28Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/52782
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.20480
dc.rights Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/gr/ *
dc.subject climate change en
dc.subject risk assessment en
dc.subject mining en
dc.subject adaptation en
dc.subject Bayesian networks en
dc.title Towards a Comprehensive Framework for Climate Change Multi-Risk Assessment in the Mining Industry en
heal.type journalArticle
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2019-06-26
heal.bibliographicCitation Mavrommatis, E., Damigos, D., & Mirasgedis, S. (2019). Towards a Comprehensive Framework for Climate Change Multi-Risk Assessment in the Mining Industry. Infrastructures, 4(3), 38. https://doi.org/10.3390/infrastructures4030038 en
heal.abstract Changing climate conditions affect mining operations all over the world, but so far, the mining sector has focused primarily on mitigation actions. Nowadays, there exists increasing recognition of the need for planned adaptation actions. To this end, the development of a practical tool for the assessment of climate change-related risks to support the mining community is deemed necessary. In this study, a comprehensive framework is proposed for climate change multi-risk assessment at the local level customized for the needs of the mining industry. The framework estimates the climate change risks in economic terms by modeling the main activities that a mining company performs, in a probabilistic model, using Bayes’ theorem. The model permits incorporating inherent uncertainty via fuzzy logic and is implemented in two versatile ways: as a discrete Bayesian network or as a conditional linear Gaussian network. This innovative quantitative methodology produces probabilistic outcomes in monetary values estimated either as percentage of annual loss revenue or net loss/gains value. Finally, the proposed framework is the first multi-risk methodology in the mining context that considers all the relevant hazards caused by climate change extreme weather events, which offers a tool for selecting the most cost-effective action among various adaptation strategies. en
heal.publisher MDPI en
heal.journalName Infrastructures en
heal.journalType peer-reviewed
heal.fullTextAvailability false
dc.identifier.doi 10.3390/infrastructures4030038 el


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα