HEAL DSpace

Modelling of structures using the Isogeometric Method

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Τσαπέτης, Δημήτριος Γ. el
dc.contributor.author Tsapetis, Dimitrios en
dc.date.accessioned 2021-01-18T08:08:18Z
dc.date.issued 2021-01-18
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/52814
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.20512
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Ισογεωμετρική ανάλυση el
dc.subject Μέθοδος υποφορέων el
dc.subject Μέθοδος ταξιθεσίας el
dc.subject Ανάλυση πολλαπλών κλιμάκων el
dc.subject Λεπτότοιχα κελύφη el
dc.subject Isogeometric analysis en
dc.subject Domain decomposition en
dc.subject Multiscale analysis en
dc.subject Thin shells en
dc.subject Collocation method en
dc.title Modelling of structures using the Isogeometric Method en
dc.title Προσομοίωση Κατασκευών με την Ισογεωμετρική Μέθοδο el
dc.contributor.department Τομέας Δομοστατικής - Εργαστήριο Στατικής και Αντισεισμικών Ερευνών el
heal.type doctoralThesis
heal.classification Υπολογιστική Μηχανική el
heal.dateAvailable 2022-01-17T22:00:00Z
heal.language en
heal.access embargo
heal.recordProvider ntua el
heal.publicationDate 2021-01-14
heal.abstract Isogeometric Analysis was proposed as an alternative spatial discretization method, that addresses the need for an integrated pipeline of Computer Aided Design and Computer Aided Engineering industries, towards the development of efficient and reliable structures. To this end, CAD shape functions ranging from B´ezier to T-Splines are utilized, that allow the exact geometrical representation of arbitrarily complex geometries, while at the same time rendering the mesh generation procedure of other spatial discretization techniques such as FEM obsolete. Due to the high smoothness of the shape functions over conventional approaches, IGA has showcased significant advantages in various computational mechanics fields such as structural dynamics, fluid mechanics and optimization problems. In addition, the description of intricate geometries with highly continuous shape functions, enables IGA to be effectively used for shell theories such as Kirchhoff-Love thin shells, that required special treatment in the case of FEM. The latter resulted in the introduction of various shell formulations, for miscellaneous materials. Unfortunately, the strongest asset of isogeometric methods, which is the increased interelement continuity of the shape functions, constitutes at the same time its greatest weakness. Despite resulting in a smooth variation of the analysis characteristics and enhanced accuracy, a significant computational burden is added to the formation and solution of the resulting linear systems due to their increased bandwidth and reduced sparsity patterns. This rendering the introduction of efficient solution schemes a necessity for the establishment of isogeometric methods. To this end, this dissertation introduces a family of methods, to address the efficient implementation of solution schemes for the purpose of isogeometric Galerkin and collocation methods. Specifically, for the case of isogeometric Galerkin method, an appropriate modification of the overlapping nature of NURBS shape functions is introduced, in the form of truncated shape functions. This modification generates a non-overlapping equivalent of the initial model that retains the same geometry, yet has reduced accuracy. As a result,with the aid of IETI domain decomposition method, applied to the interface among adjacent subdomains, the non-overlapping model can serve as an efficient preconditioner for the PCG iterative method. In a similar fashion, a non-overlapping decomposition of the non-symmetric matrices derived from isogeometric collocation methods is proposed, that allows the development of a GMRES preconditioner based on P-FETI-DP domain decomposition method. Finally, in order to unify all existing thin shell isogeometric formulations, a framework is proposed that examines isogeometric shells under the prism of semi-concurrent multiscale analysis. To this end, a nested IGA-FEM analysis scheme is introduced, where macroscale shell modeling is performed with isogeometric Kirchhoff-Love shell elements, while Representative Volume Elements are discretized with solid finite elements. The required plane-stress constitutive law is then extracted from a homogenization process, thus leading to the introduction of a framework that can efficiently address composite materials of arbitrary microstructural topology en
heal.sponsor Ίδρυμα Ωνάση el
heal.sponsor European Research Council Advanced Grant MASTER - Mastering the computational challenges in numerical modeling and optimum design of CNT reinforced composites en
heal.sponsor European Regional Development Fund and Greek national funds under the Grant HEAT - Optimal multiscale design of innovative materials for heat exchange applications en
heal.advisorName Παπαδρακάκης, Εμμανουήλ el
heal.committeeMemberName Σπηλιόπουλος, Κωνσταντίνος el
heal.committeeMemberName Παπαδόπουλος, Βησσαρίων el
heal.committeeMemberName Γαντές, Χαράλαμπος el
heal.committeeMemberName Προβατίδης, Χριστόφορος el
heal.committeeMemberName Φραγκιαδάκης, Μιχαήλ el
heal.committeeMemberName Τριανταφύλλου, Σάββας el
heal.committeeMemberName Παπαδρακάκης, Εμμανουήλ el
heal.academicPublisher Σχολή Πολιτικών Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 262 p. en
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα