HEAL DSpace

Τοπική αγορά ενέργειας βασισμένη σε blockchain τεχνολογία μελέτη εφαρμογής στην κοινότητα Los Molinos del Rio Aguas

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Καρυστινός, Χρήστος el
dc.contributor.author Karystinos, Christos en
dc.date.accessioned 2021-02-22T18:45:36Z
dc.date.available 2021-02-22T18:45:36Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/52899
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.20597
dc.rights Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/gr/ *
dc.subject Blockchain en
dc.subject Off grid en
dc.subject Decentralized energy markets en
dc.subject Αποκεντρωμένη αγορά ενέργειας el
dc.subject Μη διασυνδεδεμένα συστήματα el
dc.title Τοπική αγορά ενέργειας βασισμένη σε blockchain τεχνολογία μελέτη εφαρμογής στην κοινότητα Los Molinos del Rio Aguas el
dc.title Local energy market based on blockchain technology- an application study in the Los Molinos del Rio Aguas community en
heal.type bachelorThesis
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2021-02-22
heal.bibliographicCitation [1] E. Comission, “Europe’s 2030 energy agenda.” . [2] D. Frieden, A. Tuerk, C. Neumann, S. D’Herbemont, and J. Roberts, “Collective self-consumption and energy communities : Trends and challenges in the transposition of the EU framework,” no. December, pp. 1–50, 2020. [3] K. Shuaib, J. A. Abdella, F. Sallabi, and M. Abdel-hafez, “Using Blockchains to Secure Distributed Energy Exchange,” 2018 5th Int. Conf. Control. Decis. Inf. Technol., pp. 622–627, 2018. [4] E. R. O. R. L. Awrence, “B ERKELEY N ATIONAL L ABORATORY Microgrid Evolution Roadmap Engineering , Economics , and Experience,” vol. 11231, no. Cl, 2015. [5] A. Alzahrani, M. Ferdowsi, P. Shamsi, and C. H. Dagli, “Modeling and Simulation of Microgrid,” Procedia Comput. Sci., vol. 114, pp. 392–400, 2017. [6] microgridprojects.com, “Microgrid Types.” [Online]. Available: http://microgridprojects.com/types-of-microgrids/. [7] E. Mengelkamp, J. Gärttner, K. Rock, S. Kessler, L. Orsini, and C. Weinhardt, “Designing microgrid energy markets: A case study: The Brooklyn Microgrid,” Appl. Energy, vol. 210, pp. 870–880, 2018. [8] “What is Tendermint.” [Online]. Available: https://docs.tendermint.com/master/introduction/what-is-tendermint.html. [9] “TransActive Grid definition.” [Online]. Available: https://www.cbinsights.com/company/transactive-grid. [10] T. Bragatto et al., “Innovative Tools for Demand Response Strategies: A Real-Life Experience,” in Proceedings - 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2019, 2019. [11] N. Vasile, B. Tene, A. Nedelschi, N. Fidel, and I. Craiu, “Autonomy of Electrical Systems. Technical Solutions Based on Storage of Electric Energy,” Sci. Bull. Electr. Eng. Fac., vol. 18, no. 1, pp. 55–58, 2018. [12] W. Fedak, S. Anweiler, R. Ulbrich, and B. Jarosz, “The concept of autonomous power supply system fed with renewable energy sources,” J. Sustain. Dev. Energy, Water Environ. Syst., vol. 5, no. 4, pp. 579–589, 2017. [13] A. K. Podder, K. Ahmed, N. K. Roy, and P. C. Biswas, “Design and simulation of an independent solar home system with battery backup,” 4th Int. Conf. Adv. Electr. Eng. ICAEE 2017, vol. 2018-Janua, no. July 2018, pp. 427–431, 2017. [14] S. Kloppenburg and M. Boekelo, “Digital platforms and the future of energy provisioning: Promises and perils for the next phase of the energy transition,” Energy Res. Soc. Sci., vol. 49, no. November 2018, pp. 68–73, 2019. [15] T. Sousa, T. Soares, P. Pinson, and F. Moret, “Peer-to-peer and community-based markets : A comprehensive review.” [16] J. Abdella and K. Shuaib, “Peer to Peer Distributed Energy Trading in Smart Grids: A Survey,” Energies, vol. 11, no. 6, p. 1560, 2018. [17] A. Matenli, F. Abbaspourtorbati, R. Cherkaoui, F. Mende, and L. Luongo, “Centralized and decentralized electricity markets: Assessment of operational and economic aspects,” Int. Conf. Eur. Energy Mark. EEM, vol. 2016-July, pp. 1–5, 2016. [18] J. Green and P. Newman, “Citizen utilities: The emerging power paradigm,” Energy Policy, vol. 105, no. June 2016, pp. 283–293, 2017. [19] H. Sukhwani, J. M. Martínez, X. Chang, K. S. Trivedi, and A. Rindos, “Performance modeling of PBFT consensus process for permissioned blockchain network (hyperledger fabric),” Proc. IEEE Symp. Reliab. Distrib. Syst., vol. 2017-Septe, pp. 253–255, 2017. [20] Σ. Ηλεκτρολόγων and Μ. Υπολογιστών, “Εθνικό Μετσόβιο Πολυτεχνείο Πρωτόκολλα Τυχερών Παιγνίων Με Χρήση Τεχνολογίας Αλυσίδας Συναλλαγών ( Blockchain ) Διπλωματική Εργασία Κουτσός Βλάσιος,” 2018. [21] Coinmarketcap, “Historical Data for bitcoin.” . [22] G. P.Dwyer, “The economics of Bitcoin and similar private digital currencies.” [23] “Ethereum website.” . [24] G. N. Papadodimas, “Ανάπτυξη Έξυπνων Συμβολαίων στο Blockchain και εφαρμογή στο IoT (Thesis),” 2018. [25] Eurelectric, “No Eurelectric launches expert discussion platform on blockchain.” [Online]. Available: http://www.eurelectric.org/news/2017/eurelectriclaunches-expert-discussion-platform-on-blockchain/. [26] M. Andoni et al., “Blockchain technology in the energy sector: A systematic review of challenges and opportunities,” Renew. Sustain. Energy Rev., vol. 100, no. February 2018, pp. 143–174, 2019. [27] F. M. Benčić and I. P. Žarko, “Distributed Ledger Technology: Blockchain Compared to Directed Acyclic Graph,” Proc. - Int. Conf. Distrib. Comput. Syst., vol. 2018-July, pp. 1569–1570, 2018. [28] “Ledger research.” [Online]. Available: https://medium.com/@AlexPreukschat/a-simple-guide-to-understanding-the-difference-between-blockchain-and-distributed-ledger-believers-79cddccc8708. [29] H. Vranken, “Sustainability of bitcoin and blockchains,” Curr. Opin. Environ. Sustain., vol. 28, pp. 1–9, 2017. [30] “Advantages and Current Issues of Blockchain Use in Microgrids.” [31] D. Burgwinkel, “Potential of the Blockchain in Energy Trading,” in Blockchain technology Introduction for business and IT managers, 2016. [32] L. W. Park, S. Lee, and H. Chang, “A sustainable home energy prosumer-chain methodology with energy tags over the blockchain,” Sustain., vol. 10, no. 3, pp. 1–18, 2018. [33] L. Xue, Y. Teng, Z. Zhang, J. Li, and K. Wang, “Blockchain Technology for Electricity Market in Microgrid,” 2017 2nd Int. Conf. Power Renew. Energy, pp. 704–708, 2017. [34] C. Liu, K. K. Chai, X. Zhang, E. T. Lau, and Y. Chen, “Adaptive Blockchain-based Electric Vehicle Participation Scheme in Smart Grid Platform,” IEEE Access, vol. 6, pp. 25657–25665, 2018. [35] T. Yang et al., “Applying blockchain technology to decentralized operation in future energy internet,” 2017 IEEE Conf. Energy Internet Energy Syst. Integr., pp. 1–5, 2017. [36] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, “Consortium Blockchain for Secure Energy Trading in Industrial Internet of Things,” IEEE Trans. Ind. Informatics, vol. 3203, no. c, pp. 1–10, 2017. [37] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang, and E. Hossain, “Enabling Localized Peer-to-Peer Electricity Trading among Plug-in Hybrid Electric Vehicles Using Consortium Blockchains,” IEEE Trans. Ind. Informatics, vol. 13, no. 6, pp. 3154–3164, 2017. [38] S.-C. Oh, M.-S. Kim, Y. Park, G.-T. Roh, and C.-W. Lee, “Implementation of blockchain-based energy trading system,” Asia Pacific J. Innov. Entrep., vol. 11, no. 3, pp. 322–334, 2017. [39] S. Thakur and J. G. Breslin, “Peer to Peer Energy Trade Among Microgrids Using Blockchain Based Distributed Coalition Formation Method,” Technol. Econ. Smart Grids Sustain. Energy, vol. 3, no. 1, 2018. [40] A. Hahn, R. Singh, C. C. Liu, and S. Chen, “Smart contract-based campus demonstration of decentralized transactive energy auctions,” 2017 IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf. ISGT 2017, 2017. [41] F. Imbault, M. Swiatek, R. De Beaufort, and R. Plana, “The green blockchain: Managing decentralized energy production and consumption,” Conf. Proc. - 2017 17th IEEE Int. Conf. Environ. Electr. Eng. 2017 1st IEEE Ind. Commer. Power Syst. Eur. EEEIC / I CPS Eur. 2017, 2017. [42] M. Sabounchi and J. Wei, “Towards resilient networked microgrids: Blockchain-enabled peer-to-peer electricity trading mechanism,” 2017 IEEE Conf. Energy Internet Energy Syst. Integr., pp. 1–5, 2017. [43] T. Profeta, “SEEKING PRODUCTIVE POWER : A PROPOSAL FOR BLOCKCHAIN-ENABLED MICROGRIDS IN THE AFRICAN CONTEXT by Andrew Seelaus Dr . Timothy L . Johnson , Adviser Masters project submitted in partial fulfillment of the requirements for the Master of Environmental Manage,” no. April, 2017. [44] J. Hou, H. Wang, and P. Liu, “Applying the blockchain technology to promote the development of distributed photovoltaic in China,” Int. J. Energy Res., vol. 42, no. 6, pp. 2050–2069, 2018. [45] C. Lazaroiu and M. Roscia, “Smart district through IoT and blockchain,” 2017 6th Int. Conf. Renew. Energy Res. Appl. ICRERA 2017, vol. 2017-Janua, pp. 454–461, 2017. [46] M. Pustisek, A. Kos, and U. Sedlar, “Blockchain Based Autonomous Selection of Electric Vehicle Charging Station,” 2016 Int. Conf. Identification, Inf. Knowl. Internet Things, pp. 217–222, 2016. [47] A. Abidin, A. Aly, S. Cleemput, and M. A. Mustafa, “Secure and Privacy-Friendly Local Electricity Trading and Billing in Smart Grid,” pp. 1–13, 2018. [48] L. Wu, K. Meng, S. Xu, S. Q. Li, M. Ding, and Y. Suo, “Democratic Centralism: A Hybrid Blockchain Architecture and Its Applications in Energy Internet,” Proc. - 1st IEEE Int. Conf. Energy Internet, ICEI 2017, pp. 176–181, 2017. [49] K. Tanaka, K. Nagakubo, and R. Abe, “Blockchain-based electricity trading with Digitalgrid router,” 2017 IEEE Int. Conf. Consum. Electron. - Taiwan, ICCE-TW 2017, pp. 201–202, 2017. [50] Y. N. Aung and T. Tantidham, “Review of Ethereum: Smart home case study,” 2017 2nd Int. Conf. Inf. Technol., pp. 1–4, 2017. [51] S. Aggarwal, “EnergyChain : Enabling Energy Trading for Smart Homes using Blockchains in Smart Grid Ecosystem.” [52] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for IoT security and privacy: The case study of a smart home,” 2017 IEEE Int. Conf. Pervasive Comput. Commun. Work. (PerCom Work., pp. 618–623, 2017. [53] K. Biswas and A. B. Technology, “Securing Smart Cities Using Blockchain Technology,” 2016 IEEE 18th Int. Conf. High Perform. Comput. Commun., pp. 5–6, 2016. [54] M. Mylrea and S. N. G. Gourisetti, “Blockchain: A path to grid modernization and cyber resiliency,” 2017 North Am. Power Symp. NAPS 2017, 2017. [55] G. Liang, S. R. Weller, F. Luo, J. Zhao, and Z. Y. Dong, “Distributed Blockchain-Based Data Protection Framework for Modern Power Systems against Cyber Attacks,” IEEE Trans. Smart Grid, vol. 3053, no. c, pp. 1–12, 2018. [56] N. Fabiano, “Internet of things and blockchain: legal issues and privacy. The challenge for a privacy standard,” Proc. - 2017 IEEE Int. Conf. Internet Things, IEEE Green Comput. Commun. IEEE Cyber, Phys. Soc. Comput. IEEE Smart Data, iThings-GreenCom-CPSCom-SmartData 2017, vol. 2018-Janua, pp. 727–734, 2018. [57] A. Unterweger, F. Knirsch, C. Leixnering, and D. Engel, “Lessons Learned from Implementing a Privacy-Preserving Smart Contract in Ethereum,” 2018 9th IFIP Int. Conf. New Technol. Mobil. Secur., pp. 1–5, 2018. [58] I. Kounelis, G. Steri, R. Giuliani, D. Geneiatakis, R. Neisse, and I. Nai-Fovino, “Fostering consumers’ energy market through smart contracts,” Energy Sustain. Small Dev. Econ. ES2DE 2017 - Proc., pp. 0–5, 2017. [59] X. Wu, B. Duan, Y. Yan, and Y. Zhong, “M2M Blockchain: The Case of Demand Side Management of Smart Grid,” 2017 IEEE 23rd Int. Conf. Parallel Distrib. Syst., pp. 810–813, 2017. [60] C. Akasiadis and G. Chalkiadakis, “Decentralized Large-Scale Electricity Consumption Shifting by Prosumer Cooperatives.” [61] D. Vangulick, B. Cornélusse, and D. Ernst, “Blockchain for peer-to-peer energy exchanges: design and recommendations,” Proc. XX Power Syst. Comput. Conf., 2018. [62] E. R. Sanseverino, M. L. Di Silvestre, P. Gallo, G. Zizzo, and M. Ippolito, “The blockchain in microgrids for transacting energy and attributing losses,” Proc. - 2017 IEEE Int. Conf. Internet Things, IEEE Green Comput. Commun. IEEE Cyber, Phys. Soc. Comput. IEEE Smart Data, iThings-GreenCom-CPSCom-SmartData 2017, vol. 2018-Janua, pp. 925–930, 2018. [63] G. Zizzo, E. Riva Sanseverino, M. G. Ippolito, M. L. Di Silvestre, and P. Gallo, “A Technical Approach to P2P Energy Transactions in Microgrids,” IEEE Trans. Ind. Informatics, vol. 3203, no. c, 2018. [64] E. Munsing, J. Mather, and S. Moura, “Blockchains for decentralized optimization of energy resources in microgrid networks,” 1st Annu. IEEE Conf. Control Technol. Appl. CCTA 2017, vol. 2017-Janua, pp. 2164–2171, 2017. [65] C. Karystinos, “Resident of LMRA testimony.” [66] E. Comission, “LMRA PV production statistics.” . [67] Sunseed, “Sunseed webpage.” [Online]. Available: sunseed.org.uk. [68] “Homer home webpage.” [Online]. Available: https://www.homerenergy.com/products/pro/index.html. [69] “IEA home webpage.” [Online]. Available: https://www.homerenergy.com/products/pro/index.html. [70] J. M. Rey, P. P. Vergara, J. Solano, and G. Ordóñez, Design and optimal sizing of microgrids. 2018. [71] “Wind atlas webpage.” [Online]. Available: https://globalwindatlas.info/. [72] M. Nasir, H. A. Khan, K. A. K. Niazi, Z. Jin, and J. M. Guerrero, “Dual‐loop control strategy applied to PV/battery‐based islanded DC microgrids for swarm electrification of developing regions,” J. Eng., vol. 2019, no. 18, pp. 5298–5302, 2019. [73] “D3A webpage.” . en
heal.abstract Η παρούσα διπλωματική διερευνά την υπόθεση μελέτης της δημιουργίας ενός νησιδοποιημένου μικροδίκτυο στη Νότια Ισπανία και μιας ενσωματωμένης ενεργειακής αγοράς με βάση το blockchain. Εξετάζει την υπάρχουσα βιβλιογραφία σχετικά με τις εφαρμογές που προτείνονται από ερευνητές σχετικά με το blockchain στον ενεργειακό τομέα και δημιουργεί μια ανασκόπηση για αυτές. Αυτή η ανασκόπηση χρησιμεύει ως έμπνευση για τη δημιουργία μιας εικονικής αγοράς με βάση την πλατφόρμα D3A και την τεχνολογία Grid Singularity, προκειμένου οι χρήστες του μικροδίκτυο να αντισταθμίσουν το κόστος δημιουργίας του μικροδίκτυο. Η έρευνα λαμβάνει υπόψη όλες τις κοινωνικές πτυχές του σχεδιασμού για τη διαχείριση ιδιωτικών και κοινοτικών περιουσιακών στοιχείων που προέρχονται από προσωπική επί τόπου έρευνα . el
heal.abstract The present dissertation investigates the study case of the creation of an off-grid microgrid in South Spain and an embedded blockchain-based market in it. It goes through the existing literature on the applications proposed by researchers on blockchain in the energy sector and creates a review on them. This review serves as an inspiration to create a virtual market based on D3A platform and Grid Singularity technology in order for the users of the microgrid to compensate for the costs of creating the microgrid. The investigation takes into account all the social aspects of the design on the management of private and communal assets sourced by personal investigation on-site. el
heal.advisorName Χατζυαργυρίου, Νίκος el
heal.committeeMemberName Χατζυαργυρίου, Νίκος el
heal.committeeMemberName Γεωργιλάκης, Π. el
heal.committeeMemberName Παπαθανασίου, Σ. el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Ηλεκτρικής Ισχύος en
heal.academicPublisherID ntua
heal.numberOfPages 138 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα