dc.contributor.author | Κουλέτου, Ελένη-Ιωάννα | el |
dc.date.accessioned | 2021-03-26T07:12:48Z | |
dc.date.available | 2021-03-26T07:12:48Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/53130 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.20828 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Διαχείριση πόρων | el |
dc.subject | Πρόβλεψη χρονοσειρών | el |
dc.subject | Βαθιά ενισχυτική μάθηση | el |
dc.subject | Νευρωνικά δίκτυα | el |
dc.subject | Ελαστικότητα | el |
dc.subject | Resource management | en |
dc.subject | Time-series prediction | en |
dc.subject | Deep reinforcement learning | en |
dc.subject | Neural networks | en |
dc.subject | Elasticity | en |
dc.title | Αυτοματοποιημένη διαχείριση πόρων με χρήση τεχνικών πρόβλεψης χρονοσειρών και βαθιά ενισχυτική μάθηση | el |
dc.contributor.department | Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών | el |
heal.type | bachelorThesis | |
heal.classification | Cloud Computing | en |
heal.classification | Μηχανική Μάθηση | el |
heal.classification | Υπολογιστικό Νέφος | el |
heal.classification | Machine Learning | en |
heal.language | el | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2021-03-11 | |
heal.abstract | Τα τελευταία χρόνια το cloud computing είναι ένας από τους πιο επιδραστικούς κλάδους της επιστήμης των υπολογιστών. Οι cloud υπηρεσίες γίνονται ολοένα και πιο δημοφιλείς και ο φόρτος εργασίας των παρόχων συνεχώς και αυξάνεται. Γι' αυτό τον λόγο, η διαχείριση των πόρων τείνει να γίνεται επιτακτική ανάγκη. Η αποτελεσματική διαχείριση πόρων έτσι ώστε να καλύπτονται οι ανάγκες τόσο των παρόχων όσο και των πελατών αποτελεί κυρίαρχο ζήτημα στον ερευνητικό τομέα. Έχουν αναπτυχθεί διαφορετικές τεχνικές για να λυθεί αυτό το ζήτημα. Στην παρούσα διπλωματική, ασχοληθήκαμε με τον συνδυασμό δύο τεχνικών για την δυναμική αυτοματοποίηση των πόρων. Η πρώτη αφορά την πρόβλεψη χρονοσειρών φόρτου εργασίας. Σε αυτόν τον τομέα, υλοποιήσαμε έξι διαφορετικά μοντέλα για την πρόβλεψη χρονοσειρών (ARIMA, Prophet, LSTM, GRU, CNN, Autoencoders), τα οποία συγκρίναμε με τρεις μετρικές σφαλμάτων (μέσο τετραγωνικό σφάλμα, ρίζα του μέσου τετραγωνικού σφάλματος και μέσο απόλυτο σφάλμα). Με μικρή διαφορά, καλύτερο αποδείχτηκε το LSTM. Η δεύτερη αφορά την αυτοματοποιημένη διαχείριση πόρων με χρήση ενός πράκτορα βαθιάς ενισχυτικής μάθησης. Υλοποιήσαμε και πειραματιστήκαμε με δύο διαφορετικές μορφές χρονοσειρών (ένα απλό ημίτονο και μια πιο περίπλοκη χρονοσειρά) και με δύο διαφορετικής μορφής συναρτήσεις επιβράβευσης. Σε κάθε περίπτωση, ο πράκτορας μας λειτουργούσε αρκετά ικανοποιητικά. Στη συνέχεια, συνδυάσαμε τις παραπάνω τεχνικές. Σχεδιάσαμε, λοιπόν, ένα νέο σύστημα το οποίο βασίζεται στον πράκτορα της βαθιάς ενισχυτικής μάθησης αλλά ταυτόχρονα λαμβάνει μια έξτρα πληροφορία για την μελλοντική κατάσταση του περιβάλλοντος μέσω του μοντέλου πρόβλεψης, ώστε να αποφασίσει ποια δράση θα πραγματοποιήσει. Συγκρίναμε το νέο μας μοντέλο με τον απλό πράκτορα βαθιάς ενισχυτικής μάθησης και συμπεράναμε ότι αντιλαμβάνεται πιο γρήγορα τις αλλαγές του φόρτου εργασίας και δρα πιο άμεσα. Αυτό είναι κάτι που περιμέναμε δεδομένου ότι, πλέον, ο πράκτορας μας για να πάρει μια απόφαση λαμβάνει υπόψη του τόσο την τωρινή κατάσταση όσο και μια πρόβλεψη για την μελλοντική κατάσταση του συστήματος. Τέλος, εξετάσαμε και αναφέρουμε μελλοντικές επεκτάσεις του συστήματος μας, ώστε να γίνει ακόμα πιο αποδοτικό. | el |
heal.advisorName | Κοζύρης, Νεκτάριος | el |
heal.committeeMemberName | Κοζύρης, Νεκτάριος | el |
heal.committeeMemberName | Γκούμας, Γεώργιος | el |
heal.committeeMemberName | Κωνσταντίνου, Ιωάννης | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών | el |
heal.academicPublisherID | ntua | |
heal.numberOfPages | 92 σ. | el |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: