HEAL DSpace

Corrosion detection with computer vision and deep learning

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ματθαίου, Αχιλλέας el
dc.contributor.author Matthaiou, Achilleas en
dc.date.accessioned 2021-03-30T09:41:21Z
dc.date.available 2021-03-30T09:41:21Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/53194
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.20892
dc.rights Default License
dc.subject Corrosion Detection en
dc.subject Deep learning en
dc.subject Computer vision en
dc.subject Object detection en
dc.subject Convolutionalnneural network en
dc.subject Βαθιά μάθηση el
dc.subject Εντοπισμός διάβρωσης el
dc.subject Όραση υπολογιστών el
dc.subject Νευρωνικά δίκτυα el
dc.subject Εντοπισμός αντικειμένου el
dc.title Corrosion detection with computer vision and deep learning en
heal.type bachelorThesis
heal.classification Artificial intelligence en
heal.classification Marine structures monitoring en
heal.classification Deep learning en
heal.classification Computer vision en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2021-03-08
heal.abstract This study investigates and test solutions for automated corrosion detection processes that focus on the visual attributes of corrosion. Artificial intelligence methods are employed to extract information from images. Corroded surfaces have two visually identified attributes color and texture. To detect corrosion based on color, a color tracking algorithm is created and tested using images from different compartments of vessels. To detect corrosion based on texture, deep learning algorithms are used, and two approaches are tested. The first approach is a binary classification model trained using a Convolutional Neural Network (CNN) architecture employing transfer learning. The model is also used by a sliding algorithm to allow detection and localization in large corroded plates. The second approach treats corrosion detection as an object detection problem. A Single Shot Detector (SSD) is trained using transfer learning to detect corrosion on real world images. To support training and testing of all models two datasets are created. The first dataset consists of images of metals corroded in a laboratory environment, while the second dataset from real world images of corroded compartments from bulk carriers’ inspections. The study finds all three methods capable to perform corrosion detection with the deep learning approaches yielding better results. Comparing the two deep learning approaches, object detection is found to be more suitable for real world examples. en
heal.advisorName Παπαλάμπρου, Γεώργιος el
heal.committeeMemberName Ζαραφωνίτης, Γεώργιος el
heal.committeeMemberName Σαμουηλίδης, Μανόλης el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Ναυτικής Μηχανολογίας. Εργαστήριο Ναυτικής Μηχανολογίας el
heal.academicPublisherID ntua
heal.numberOfPages 97 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής