dc.contributor.author |
Ματθαίου, Αχιλλέας
|
el |
dc.contributor.author |
Matthaiou, Achilleas
|
en |
dc.date.accessioned |
2021-03-30T09:41:21Z |
|
dc.date.available |
2021-03-30T09:41:21Z |
|
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/53194 |
|
dc.identifier.uri |
http://dx.doi.org/10.26240/heal.ntua.20892 |
|
dc.rights |
Default License |
|
dc.subject |
Corrosion Detection |
en |
dc.subject |
Deep learning |
en |
dc.subject |
Computer vision |
en |
dc.subject |
Object detection |
en |
dc.subject |
Convolutionalnneural network |
en |
dc.subject |
Βαθιά μάθηση |
el |
dc.subject |
Εντοπισμός διάβρωσης |
el |
dc.subject |
Όραση υπολογιστών |
el |
dc.subject |
Νευρωνικά δίκτυα |
el |
dc.subject |
Εντοπισμός αντικειμένου |
el |
dc.title |
Corrosion detection with computer vision and deep learning |
en |
heal.type |
bachelorThesis |
|
heal.classification |
Artificial intelligence |
en |
heal.classification |
Marine structures monitoring |
en |
heal.classification |
Deep learning |
en |
heal.classification |
Computer vision |
en |
heal.language |
en |
|
heal.access |
free |
|
heal.recordProvider |
ntua |
el |
heal.publicationDate |
2021-03-08 |
|
heal.abstract |
This study investigates and test solutions for automated corrosion detection processes that focus on the visual attributes of corrosion. Artificial intelligence methods are employed to extract information from images. Corroded surfaces have two visually identified attributes color and texture. To detect corrosion based on color, a color tracking algorithm is created and tested using images from different compartments of vessels. To detect corrosion based on texture, deep learning algorithms are used, and two approaches are tested. The first approach is a binary classification model trained using a Convolutional Neural Network (CNN) architecture employing transfer learning. The model is also used by a sliding algorithm to allow detection and localization in large corroded plates. The second approach treats corrosion detection as an object detection problem. A Single Shot Detector (SSD) is trained using transfer learning to detect corrosion on real world images. To support training and testing of all models two datasets are created. The first dataset consists of images of metals corroded in a laboratory environment, while the second dataset from real world images of corroded compartments from bulk carriers’ inspections. The study finds all three methods capable to perform corrosion detection with the deep learning approaches yielding better results. Comparing the two deep learning approaches, object detection is found to be more suitable for real world examples. |
en |
heal.advisorName |
Παπαλάμπρου, Γεώργιος |
el |
heal.committeeMemberName |
Ζαραφωνίτης, Γεώργιος |
el |
heal.committeeMemberName |
Σαμουηλίδης, Μανόλης |
el |
heal.academicPublisher |
Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ναυπηγών Μηχανολόγων Μηχανικών. Τομέας Ναυτικής Μηχανολογίας. Εργαστήριο Ναυτικής Μηχανολογίας |
el |
heal.academicPublisherID |
ntua |
|
heal.numberOfPages |
97 σ. |
el |
heal.fullTextAvailability |
false |
|