HEAL DSpace

The Vidav-Palmer theorem and C*-equivalent algebras

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Μπαζιώτης, Γεώργιος el
dc.contributor.author Baziotis, Georgios en
dc.date.accessioned 2021-05-17T18:39:04Z
dc.date.available 2021-05-17T18:39:04Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/53437
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.21135
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Εφαρμοσμένες Μαθηματικές Επιστήμες” el
dc.rights Default License
dc.subject Εφαρμοσμένες μαθηματικές επιστήμες el
dc.subject Συναρτησιακή ανάλυση el
dc.subject Θεωρία τελεστών el
dc.subject C*-άλγεβρες el
dc.subject Άλγεβρες banach el
dc.subject Operator theory en
dc.subject Applied mathematical sciences en
dc.subject Functional analysis en
dc.subject C*-algebras en
dc.subject Banach algebras en
dc.title The Vidav-Palmer theorem and C*-equivalent algebras en
dc.title Το Θεώρημα Vidav-Palmer και οι C*-ισοδύναμες άλγεβρες el
heal.type masterThesis
heal.classification Μαθηματικά el
heal.classification Mathematics en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2021-03-05
heal.abstract Over the last century, the mathematical area of Operator Algebras has gained a lot of attention among mathematicians, thanks to the numerous applications on Natural Sciences. The most famous mathematical object on this area are C*-algebras. Primarily used to model the algebra of observables in quantum mechanics, a C*-algebra is a very well behaved structure with which a mathematician can approach many problems in Mathematics. This great behavior is the fact from which the purpose of this thesis arises. Unlike the previous, the more general object called Banach algebra is not that well behaved. Therefore, the purpose of this Master’s thesis is to present some conditions in order for an arbitrary Banach or *-Banach algebra to be a C*-algebra. In the first chapter, which is an introduction to Banach algebras, we provide the essential concepts and tools in order to continue. In the second chapter we introduce the concept of an involutive Banach algebra and demonstrate the characterization of hermitian and symmetric *-Banach algebras, with the celebrated Shiralli-Ford Theorem and provide some useful results rising from Pt´ak’s Inequality. Also a brief presentation regarding M¨obius Transformations takes place, necessary to prove the Russo-Dye Theorem. In the third chapter, after the description of the concept of the Numerical Range is displayed, we find ourselves in a position to provide the first major result, the Vidav-Palmer Theorem. In the last chapter, we provide some well-known results on C*-algebras such as the Gelfand-Naimark Theorem and introduce the reader to the concept of C*-equivalent algebras. After the presentation of some early results by B. A. Barnes, we conclude with J. Cuntz’s ingenious proof that local C*-equivalence implies C*-equivalence. en
heal.advisorName Γιαννακάκης, Νικόλαος el
heal.advisorName Yannakakis, Nikolaos en
heal.committeeMemberName Γιαννακάκης, Νικόλαος el
heal.committeeMemberName Δριβαλιάρης, Δημοσθένης el
heal.committeeMemberName Ανούσης, Μιχαήλ el
heal.committeeMemberName Yannakakis, Nikolaos en
heal.committeeMemberName Drivaliaris, Dimosthenis en
heal.committeeMemberName Anousis, Michael en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών el
heal.academicPublisherID ntua
heal.numberOfPages 80 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής