HEAL DSpace

Οπτική αναγνώριση συναισθήματος με βάση το σημασιολογικό περιεχόμενο και χρήση βαθιών νευρωνικών δικτύων

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Πίκουλης, Ιωάννης el
dc.contributor.author Pikoulis, Ioannis en
dc.date.accessioned 2021-07-15T09:16:32Z
dc.date.available 2021-07-15T09:16:32Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/53627
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.21325
dc.rights Default License
dc.subject Αναγνώριση συναισθήματος el
dc.subject Βαθιά νευρωνικά δίκτυα el
dc.subject Πρόσωπο el
dc.subject Σώμα el
dc.subject Οπτικό-σημασιολογικό περιεχόμενο el
dc.subject Emotion recognition en
dc.subject Deep neural networks en
dc.subject Face en
dc.subject Body en
dc.subject Vsual-semantic context en
dc.title Οπτική αναγνώριση συναισθήματος με βάση το σημασιολογικό περιεχόμενο και χρήση βαθιών νευρωνικών δικτύων el
heal.type bachelorThesis
heal.secondaryTitle Context-Based Visual Emotion Recognition Using Deep Neural Networks en
heal.classification Computer Vision en
heal.classification Pattern Recognition en
heal.classification Machine Learning en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2021-06-24
heal.abstract Visual emotion recognition constitutes a major subject in the interdisciplinary field of Computer Vision which is associated with the process of identifying human emotion on categorical (discrete) and/or dimensional (continuous) level, as it is being depicted in still images or video sequences. A review of related literature reveals that the majority of past efforts in visual emotion recognition have been mostly limited to the analysis of facial expressions, while some studies have either incorporated information relative to body pose or have attempted to perform emotion recognition solely on the basis of body movements and gestures. While some of these approaches perform well in controlled environments, they fail to interpret real-world scenarios where unpredictable social settings can render one or multiple of the aforementioned sources of affective information inaccessible. However, evidence from psychology related studies suggest that visual context, in addition to facial expression and body pose, provides important information to the perception of people’s emotions. In this work, we aim at reinforcing the concept of context-based visual emotion recognition. To this end, we conduct extensive experiments on two newly assembled and challenging databases, i.e. the EMOTions In Context (EMOTIC) and Body Language Dataset (BoLD), tackling both the image-based and video-based versions of the problem. More specifically we: • Extend already successful baseline architectures by incorporating multiple input streams that encode bodily, facial, contextual as well as scene related features, thus enhancing our models’ understanding of visual context and emotion in general. • Directly infuse scene classification scores and attributes as additional features in the emotion recognition process that function in a complementary manner with respect to all other sources of affective information. To the best of our knowledge, our approach is the first to do so. • Exploit categorical emotion label dependencies, that reside within the datasets, through the usage of Graph Convolutional Networks (GCN) and the addition of metric-learning inspired loss that is based on GloVe word embeddings. • Achieve competitive results on EMOTIC and significant improvements over the state-of-the-art techniques with relation to BoLD. A big portion of our contributions was submitted to the 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG), with the authors being Ioannis Pikoulis, Panagiotis Paraskevas Filntisis and Petros Maragos. en
heal.advisorName Μαραγκός, Πέτρος el
heal.committeeMemberName Μαραγκός, Πέτρος el
heal.committeeMemberName Τζαφέστας, Κωνσταντίνος el
heal.committeeMemberName Ποταμιάνος, Γεράσιμος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Σημάτων, Ελέγχου και Ρομποτικής. Εργαστήριο Όρασης Υπολογιστών, Επικοινωνίας Λόγου και Επεξεργασίας Σημάτων el
heal.academicPublisherID ntua
heal.numberOfPages 164 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής