HEAL DSpace

Control of a hybrid marine propulsion plant with Reinforcement Learning

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsiknias, Georgios en
dc.contributor.author Τσικνιάς, Γεώργιος el
dc.date.accessioned 2021-08-31T08:04:29Z
dc.date.available 2021-08-31T08:04:29Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/53758
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.21456
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Συστήματα Αυτοματισμού” el
dc.rights Default License
dc.subject Reinforcement Learning en
dc.subject Control en
dc.subject Hybrid system en
dc.subject PPO en
dc.subject DQN en
dc.subject Ενισχυμένη μάθηση el
dc.subject 'Ελεγχος el
dc.subject Υβριδικό σύστημα el
dc.title Control of a hybrid marine propulsion plant with Reinforcement Learning en
heal.type masterThesis
heal.classification Έλεγχος el
heal.classification Controls engineering en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2021-06-30
heal.abstract In this thesis, the implementation of reinforcement learning applications in a hybrid dieselelectric marine power plant is investigated. Initially, modeling procedure of the components of the power plant is been presented. For each component (engine, electric motor/ generator, battery), a models was introduced from previous studies [1]. The aim is to nd RL methods and set-ups which are accurate and computationally e cient, so that the agent would be able to solve the optimization problem in real time. Moreover, di erent environment formulations where also reviewed in order to set up a reliable simulation for the RL controller-agent. Reinforcement Learning control is a sophisticated machine learning control method which can handle nonlinear multi-variable problems with constraints by solving the optimization problem of minimizing an objective function over a nite horizon. The developed algorithms were evaluated regarding the performance with simulations in a virtual hybrid diesel-electric set-up in Julia Pluto environment and Matlab RL Designer. Finally, the performance of the developed trained agent-controllers was simulated and veri ed on working cycles with the modeled hybrid propulsion plant HIPPO-2. The simulations were conducted for various load pro les and state transitions, and the agentscontrollers were evaluated regarding the their ability to track the contextually reference and satisfy the prede ned constraints. en
heal.advisorName Papalambrou, George en
heal.committeeMemberName Papalambrou, George en
heal.committeeMemberName Tzafestas, Kwnstantinos en
heal.committeeMemberName Kyriakopoulos, Kwnstantinos en
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Μηχανολόγων Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 97 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής