dc.contributor.author | Ανδρίκος, Κωνσταντίνος | el |
dc.contributor.author | Andrikos, Konstantinos | en |
dc.date.accessioned | 2021-09-08T05:43:27Z | |
dc.date.available | 2021-09-08T05:43:27Z | |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/53813 | |
dc.identifier.uri | http://dx.doi.org/10.26240/heal.ntua.21511 | |
dc.description | Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Υπολογιστική Μηχανική” | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ | * |
dc.subject | Smart gas sensing | en |
dc.subject | Metal oxide gas sensors | en |
dc.subject | Pattern recognition | en |
dc.subject | Machine learning | en |
dc.subject | Neural networks | en |
dc.title | Smart Gas Sensors: Deep Learning for the identification and classification of various gaseous species by sensors | en |
heal.type | masterThesis | |
heal.generalDescription | Η εργασίας εκπονήθηκε εξ' ολοκλήρου στα Ινστιτούτα Πληροφορικής και Τηλεπικοινωνιών και Νανοεπιστήμης και Νανοτεχνολογίας του Εθνικού Κέντρου Έρευνας και Φυσικών Επιστημών (Ε.Κ.Ε.Φ.Ε.) "Δημόκριτος" | el |
heal.classification | Gas Sensors, Machine Learning | en |
heal.language | en | |
heal.access | free | |
heal.recordProvider | ntua | el |
heal.publicationDate | 2021-07-05 | |
heal.abstract | The aim of this present thesis was the exploitation of Artificial Intelligence (AI) algorithms for the discrimination of various gaseous species based on their type and concentration. For the detection of the volatile organic compounds we used metal oxide semiconductor (MOX) gas sensors. A key feature of these sensors is the alteration of one or more of their physical properties upon exposure to a gas stimuli in a way that is possible to measure and quantify. In our experiments during the exposure of an array of sensors to a deoxidizing gas, changes in the resistance of each sensor were measured. The acquired data were multivariate time series since we measured the response of an array of three sensors. The gas sensor array (GSA) delivers a unique fingerprint upon exposure to a gas stimuli. The next stage consists of pre-processing the acquired time series in order to use a pattern recognition algorithm for the recognition of the acquired fingerprint. In this context we used machine learning (ML) and deep learning (DL) models which after sufficient training, they are capable of predicting the class of a future recording of the GSA. The experimental process includes an odour delivery system, consisting of a sealed chamber where the GSA was placed, a gas injection phase, and the measure of the responses of the GSA by the Keithley 2400 instrument. We constructed the GSA’s electrical circuit and also a circuit for the control of the acquisition by an Arduino microcontroller. This work demonstrates the utilization of ML and DL algorithms in the field of smart gas sensors. For this purpose we used the dataset created in the laboratory but also some relevant datasets freely available from the UCI Machine Learning Repository. | el |
heal.advisorName | Λαγαρός, Νικόλαος | el |
heal.committeeMemberName | Λαγαρός Νικόλαος | el |
heal.committeeMemberName | Θεοδώρου Δώρος | el |
heal.committeeMemberName | Ριζιώτης Βαίλης | el |
heal.academicPublisher | Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Χημικών Μηχανικών | el |
heal.academicPublisherID | ntua | |
heal.fullTextAvailability | false |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: