HEAL DSpace

Smart Gas Sensors: Deep Learning for the identification and classification of various gaseous species by sensors

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ανδρίκος, Κωνσταντίνος el
dc.contributor.author Andrikos, Konstantinos en
dc.date.accessioned 2021-09-08T05:43:27Z
dc.date.available 2021-09-08T05:43:27Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/53813
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.21511
dc.description Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Υπολογιστική Μηχανική”
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Smart gas sensing en
dc.subject Metal oxide gas sensors en
dc.subject Pattern recognition en
dc.subject Machine learning en
dc.subject Neural networks en
dc.title Smart Gas Sensors: Deep Learning for the identification and classification of various gaseous species by sensors en
heal.type masterThesis
heal.generalDescription Η εργασίας εκπονήθηκε εξ' ολοκλήρου στα Ινστιτούτα Πληροφορικής και Τηλεπικοινωνιών και Νανοεπιστήμης και Νανοτεχνολογίας του Εθνικού Κέντρου Έρευνας και Φυσικών Επιστημών (Ε.Κ.Ε.Φ.Ε.) "Δημόκριτος" el
heal.classification Gas Sensors, Machine Learning en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2021-07-05
heal.abstract The aim of this present thesis was the exploitation of Artificial Intelligence (AI) algorithms for the discrimination of various gaseous species based on their type and concentration. For the detection of the volatile organic compounds we used metal oxide semiconductor (MOX) gas sensors. A key feature of these sensors is the alteration of one or more of their physical properties upon exposure to a gas stimuli in a way that is possible to measure and quantify. In our experiments during the exposure of an array of sensors to a deoxidizing gas, changes in the resistance of each sensor were measured. The acquired data were multivariate time series since we measured the response of an array of three sensors. The gas sensor array (GSA) delivers a unique fingerprint upon exposure to a gas stimuli. The next stage consists of pre-processing the acquired time series in order to use a pattern recognition algorithm for the recognition of the acquired fingerprint. In this context we used machine learning (ML) and deep learning (DL) models which after sufficient training, they are capable of predicting the class of a future recording of the GSA. The experimental process includes an odour delivery system, consisting of a sealed chamber where the GSA was placed, a gas injection phase, and the measure of the responses of the GSA by the Keithley 2400 instrument. We constructed the GSA’s electrical circuit and also a circuit for the control of the acquisition by an Arduino microcontroller. This work demonstrates the utilization of ML and DL algorithms in the field of smart gas sensors. For this purpose we used the dataset created in the laboratory but also some relevant datasets freely available from the UCI Machine Learning Repository. el
heal.advisorName Λαγαρός, Νικόλαος el
heal.committeeMemberName Λαγαρός Νικόλαος el
heal.committeeMemberName Θεοδώρου Δώρος el
heal.committeeMemberName Ριζιώτης Βαίλης el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Χημικών Μηχανικών el
heal.academicPublisherID ntua
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα