HEAL DSpace

Development of computational methods for the prediction of material properties

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Varsou, Dimitra-Danai el
dc.contributor.author Βάρσου, Δήμητρα-Δανάη en
dc.date.accessioned 2021-11-26T08:45:55Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/54101
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.21799
dc.rights Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα *
dc.rights Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/gr/ *
dc.subject nanoinformatics en
dc.subject read-across en
dc.subject predictive modelling en
dc.subject safety-by-design en
dc.subject νανοπληροφορική el
dc.subject προβλεπτικά μοντέλα el
dc.subject ασφάλεια στο στάδιο του σχεδιασμού el
dc.subject συγκριτικό πλαίσιο read-across el
dc.subject engineered nanomaterials en
dc.subject διαδικτυακές εφαρμογές el
dc.title Development of computational methods for the prediction of material properties en
dc.title Ανάπτυξη υπολογιστικών μεθόδων για την πρόβλεψη ιδιοτήτων υλικών el
heal.type doctoralThesis
heal.classification Machine learning en
heal.classification Nanoinformatics en
heal.dateAvailable 2022-11-25T22:00:00Z
heal.language en
heal.access embargo
heal.recordProvider ntua el
heal.publicationDate 2021-07-02
heal.abstract The main objective of this PhD program is the development of innovative computational read-across methods for predicting engineered nanomaterial (ENM) properties (with emphasis to toxicity-related endpoints), based on experimental data. The read-across methods aim at determining neighbours (similar samples) to the query ENM in a dataset of ENMs with known properties and creating groups of related substances that have similar biological activity or toxic response. An important step in all the developed methodologies is the selection of the properties that are relevant to the endpoint of interest, to reduce the dimensionality of the models, avoid over-fitting and generate interpretable models. The automation of all the modelling parameters, is a key goal in this research project, and the proposed methodologies require the minimum information from the users to produce valid and robust read-across models. Special emphasis was given in the making of the models developed in this program available through repositories or via user-friendly web applications. Implementation of the models as web tools supports their dissemination and actual use by all stakeholders in real-life applications. To begin with, a novel read-across methodology, related to the prediction of ENMs toxicity was developed. The method selects the most important variables and defines the neighbouring area around the target ENM, using single or multiple similarity criteria. The similarity criteria depend on the available ENM properties (e.g., physicochemical, biological, biokinetics etc.). The read-across prediction is computed as the weighted average of the neighbour ENMs. This novel grouping approach is based on the formulation and the solution of a mixed integer non-linear mathematical programming problem. A specific genetic algorithm scheme was developed to compute an approximate solution, due to the complexity of the problem rendering it practically unsolvable by conventional mathematical algorithms. The second method constructs, a mixed integer-linear optimisation program, which automatically filters out the noisy variables, defines the grouping boundaries based on one of the available properties -which is automatically chosen- and develops specific to each group LASSO linear regression predictive models. The third computational workflow is based on the formulation of a mathematical optimisation methodology that groups the ENMs into regions -according to their endpoint value-, removes the noisy variables, and incorporates the LASSO method for training predictive linear models specific to each region. Finally, k-Nearest Neighbours machine learning methodology was applied for deriving read-across models predicting the cytotoxicity and the biological activity of decorated multiwalled carbon nanotubes using calculated molecular descriptors of their surface ligands, and the zeta-potential of ENMs using geometrical ENMs properties extracted form transmission electron microscopy images. All developed methodologies were applied and validated on benchmark datasets, based on OECD principles, and were compared with methodologies already presented in Literature. They proved to be comparable and, in several cases, outperformed other alternative predictive modelling techniques, illustrating this way their good predictive performance and capabilities. Taking also into account that the grouping, feature selection and model generation steps are fully automated, the proposed methods can be considered as promising new approaches in the field of grouping/read-across modelling. en
heal.sponsor The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 637) en
heal.advisorName Sarimveis, Haralambos
heal.committeeMemberName Sarimveis, Haralambos
heal.committeeMemberName Valsami-Jones, Eugenia
heal.committeeMemberName Charitidis, Constantinos
heal.committeeMemberName Theodorou, Doros
heal.committeeMemberName Tsopelas, Fotios
heal.committeeMemberName Melagraki, Georgia
heal.committeeMemberName Lynch, Iseult
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Χημικών Μηχανικών el
heal.academicPublisherID ntua
heal.numberOfPages 270
heal.fullTextAvailability false
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 3.0 Ελλάδα