HEAL DSpace

An Explainable AI Model for ICU admission prediction of COVID­19 patients

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Δαζέα, Ελένη el
dc.contributor.author Dazea, Eleni en
dc.date.accessioned 2021-11-29T10:36:52Z
dc.date.available 2021-11-29T10:36:52Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/54114
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.21812
dc.rights Default License
dc.subject Explainable AI en
dc.subject Machine Learning el
dc.subject Logic Programming without Negation as Failure en
dc.subject Gorgias en
dc.subject COVID­ 19 en
dc.subject Επεξηγήσιμη τεχνητή νοημοσύνη el
dc.subject Μηχανική Μάθηση el
dc.subject Λογικός προγραμματισμός χωρίς άρνηση ως αποτυχία el
dc.subject Γοργίας el
dc.title An Explainable AI Model for ICU admission prediction of COVID­19 patients en
dc.title Κατασκευή μοντέλου επεξηγήσιμης τεχνητής νοημοσύνης για την πρόβλεψη εισαγωγής σε ΜΕΘ ασθενών με COVID-19 el
heal.type bachelorThesis
heal.classification Επιστήμη Υπολογιστών el
heal.language el
heal.language en
heal.access campus
heal.recordProvider ntua el
heal.publicationDate 2021-07-09
heal.abstract Machine Learning is a field that is widely used in all aspects of our lives. However, despite of the benefits of its use, its function and the process that every model follows to produce a result can not be easily comprehended by a human. Especially in medical applications and self driving cars, it is very important for the user to understand the steps the model takes to reach the solution and the importance of the features of the model, in order to avoid mistakes and improve the model’s functionality. In this thesis, we created an explainable AI model that can predict the ICU admission of COVID­19 patients, based on their symptoms and lab results. An important feature of our model is the interpretation and justification of the prediction to the user. This would allow for example a doctor that uses the program to know in advance which patients are more likely to be admitted to the ICU and monitor them and also assess the validity of such prediction. For the creation of the program, we first trained models with a variety of different algorithms in Python, using COVID­19 patients’ data from the Sirio Libanes hospital in Sao Paolo, Brazil. Then, we took the model with the highest accuracy, which in this case was used an adaboost algorithm with a random forest weak learner and transferred it in the R language, where we used the InTrees library to create a sum of the most important rules, which we can use to get a good ICU admission prediction. Finally, with the above rules, we created a Prolog program, using the Gorgias framework, which takes as an input some important patient lab results and returns a prediction on whether the patient will be admitted and the key symptoms based on which the program produced that result. The framework for the user’s communication with Gorgias was written in Java. en
heal.advisorName Στεφανέας, Πέτρος el
heal.committeeMemberName Στεφανέας, Πέτρος el
heal.committeeMemberName Παπασπύρου, Νικόλαος el
heal.committeeMemberName Παγουρτζής, Αριστείδης el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών el
heal.academicPublisherID ntua
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής