HEAL DSpace

Σχεδίαση και αξιολόγηση τεχνικών προσεγγιστικού υπολογισμού σε βαθιά νευρωνικά δίκτυα

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Μακρής, Γεώργιος el
dc.contributor.author Makris, Georgios en
dc.date.accessioned 2021-12-14T09:27:53Z
dc.date.available 2021-12-14T09:27:53Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/54166
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.21864
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/gr/ *
dc.subject Προσεγγιστικοί υπολογισμοί el
dc.subject Approximate computing en
dc.subject Συνελικτικά νευρωνικά δίκτυα el
dc.subject Προσεγγιστικοί πολλαπλασιαστές el
dc.subject Εξοικονόμηση ενέργειας el
dc.subject Υπολογιστική ακρίβεια el
dc.subject Deep neural network en
dc.subject Approximate multipliers en
dc.subject Energy efficiency en
dc.subject Inference accuracy en
dc.title Σχεδίαση και αξιολόγηση τεχνικών προσεγγιστικού υπολογισμού σε βαθιά νευρωνικά δίκτυα el
dc.title Design and evaluation of approximation techniques using approximate multipliers on deep neural networks en
heal.type bachelorThesis
heal.classification Προσεγγιστικοί υπολογισμοί και βαθιά νευρωνικά δίκτυα el
heal.classification Approximate computing and deep neural networks en
heal.language el
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2021-06-24
heal.abstract Over the past decade Convolutional Neural Networks (CNNs) emerged as the state-of- the-art approach to tackle certain Computer Vision problems such as image classi fication and object detection. The state-of-the-art works clearly indicate that neural networks feature an intrinsic error-resilience property. Since they often process noisy or redundant data and their users are willing to accept certain errors in many cases, the principles of approximate computing can be employed in the design of their energy efficient implementations. In this thesis, we target the development of novel approximation techniques that pro- vide a good trade-off between between energy consumption, performance and error, by performing an in-depth design space exploration to nd optimal solutions. In particular, we exploited the open-source library [1] that extends Tensorflow by providing Approximate Convolutional layers i.e., layers with reduced precision implemented using approximate multipliers. We extended this library by designing and developing four new approximation techniques in an effort to fi nd the optimal solutions that achieve a good a good trade-off between between energy consumption and inference accuracy. In order to develop this techniques we followed an hierarchical order. More speci fically, in the first technique we followed a non-uniform structure per layer, by replacing the multiplications in various convolutional layers with diverse approximate components while maintaining the accurate multiplications in other layers. In the second technique, we split the number of fi lters in each layer into k equivalent parts and assign in each of these parts a different approximate multiplier. In the third technique, we performed approximations inside the filters by either replacing the multiplications i.e., partial products, with diverse approximate components or simply skipping this operations i.e, not executing them at all. In the fourth and final approximation technique we observed that the fi lter weights of each layer follow a normal distribution and based on this we proposed to execute only the multiplications that have filter weights that belong in either this range [μ-σ,μ+σ] or this [μ-2σ,μ+2σ]. The evaluation of our proposed techniques is performed in Tensorflow with Resnet-8 using the validation set from CIFAR-10 and three inexact multipliers with different perforation, by examining the inference accuracy and energy for the inference of one input image. The final results show that the third and second technique are the best since they provide a signifi cant energy saving up to 33:5% and 30:4% compared to the accurate implementation respectively with a negligible drop in the inference accuracy. Finally, we compared the inference accuracy and the energy when some approximate multipliers from the EvoApproxLib[2] were employed in the Resnet-8 with the inference accuracy and energy that are provided by are best approximation techniques. The comparisons showed that our solutions are far better in terms of both inference accuracy and energy. en
heal.advisorName Σούντρης, Δημήτριος el
heal.committeeMemberName Τσανάκας, Παναγιώτης el
heal.committeeMemberName Πνευματικάτος, Διονύσιος el
heal.academicPublisher Εθνικό Μετσόβιο Πολυτεχνείο. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών. Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων VLSI el
heal.academicPublisherID ntua
heal.numberOfPages 164 σ. el
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ελλάδα