HEAL DSpace

Online Algorithms for Dynamic Aggregation Problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kavouras, Loukas
dc.date.accessioned 2021-12-22T09:11:35Z
dc.date.available 2021-12-22T09:11:35Z
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/54233
dc.identifier.uri http://dx.doi.org/10.26240/heal.ntua.21931
dc.rights Default License
dc.subject αλγοριθμοι el
dc.subject αμεσοι αλγοριθμοι el
dc.subject βελτιστοποιηση el
dc.subject μαθηση el
dc.subject δυναμικη συναθροιση el
dc.subject algorithms en
dc.subject online algorithms el
dc.subject optimization el
dc.subject learning el
dc.subject dynamic aggregation el
dc.title Online Algorithms for Dynamic Aggregation Problems en
heal.type doctoralThesis
heal.classification Computer Science en
heal.language en
heal.access free
heal.recordProvider ntua el
heal.publicationDate 2021-05-27
heal.abstract In this Ph.D thesis, we study online variants of Dynamic Aggregation problems that are generalizations of prominent and well studied online problems. In the online setting, we additionally assume that the input arrives piece-by-piece and that the online algorithm has to provide a solution for the input piece of the current stage before it sees the upcoming input pieces of future stages. The decision quality of the online algorithm is evaluated against an optimal offline algorithm, which is given the whole problem data from the beginning. The performance of the online algorithm is measured by the competitive ratio which is the worst-case ratio between the online cost and the optimal offline cost. We consider the online variants of the Min-Sum Set Cover problem, the K-Facility Reallocation problem and the Dynamic Facility Location problem. For all the aforementioned problems, we design online algorithms and we prove upper bounds on their competitive ratio. Moreover, we construct difficult instances for these problems and we prove lower bounds on the competitive ratio of online algorithms on these instances. The majority the upper bounds are close (or the same) with the lower bounds that we prove and this ensures that our online algorithms are optimal or near optimal. en
heal.advisorName Fotakis, Dimitris
heal.committeeMemberName Fotakis, Dimitris
heal.committeeMemberName Pagourtzis, Aris
heal.committeeMemberName Emiris, Ioannis
heal.committeeMemberName Symvonis, Antonios
heal.committeeMemberName Kontogiannis, Spyros
heal.committeeMemberName Zisimopoulos, Vasilis
heal.committeeMemberName Stamou, Giorgos
heal.academicPublisher Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών el
heal.academicPublisherID ntua
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής